
 

 
WWW.6G-XR.EU 

 
Grant Agreement No.: 101096838  Topic: HORIZON-JU-SNS-2022-STREAM-C-01-01  
Call: HORIZON-JU-SNS-2022  Type of action: HORIZON-JU-RIA 

 

 
 
 

 

 

 

 

 

D3.2: Final versions of XR enablers 
Revision: V.1.0 

 

Work package WP3 

Task Task 3.1, Task 3.2, Task 3.3, Task 3.4, Task 3.5, Task 3.6 

Due date 31/07/2025 

Submission date 25/07/2025 

Deliverable lead VICOM 

Version 1.0 

Authors Roberto Viola (VICOM), Inhar Yeregui (VICOM), Daniel Mejías (VICOM), Arne Erdmann 
(Raytrix), Andreas Pinnow (Raytrix), Stefano Spyropoulos (Raytrix), Hossameldien 
Abdalaleem (Raytrix), Tim Holtorf (Raytrix), Mario Montagud (i2CAT), Isaac Fraile 
(i2CAT), Antonio Calvo (i2CAT), Marc Martos (i2CAT), Genís Castillo (i2CAT), Chathura 
Sarathchandra (IDE), Matus Kirchmayer (MATSUKO), Aurora Ramos (CGE), Enrique 
Lluesma (CGE), Javier Godas (CGE), Ernesto Correa (CGE), Rafael Rosales (INTEL), 
Hamza Chahed (INTEL), Fernando Pargas (TID) 

Reviewers Valerio Frascolla (INT), Hemalatha Vulchi (IT), Mohammed Al-Rawi (IT) 

Abstract The 6G-XR project is focused on developing an infrastructure to support eXtended 
Reality (XR) services, addressing key use cases in Augmented Reality (AR) through the 
exploitation of an advanced network control plane and in Virtual Reality (VR) through 
the utilisation of an advanced network user plane. This document presents the final 
versions of the XR Enablers, i.e., a set of functions designed to enable a complete end-
to-end multimedia pipeline for AR/VR experiences. These XR Enablers incorporate 
capabilities such as multi-sensor volumetric capture and reconstruction, XR 
processing across the cloud-edge continuum, adaptive and low-latency content 
delivery, multi-modal synchronisation, session management, media orchestration, 
and performance monitoring through a Key Performance Indicator (KPI)-driven 
system. These enablers will be integrated in the use cases selected by 6G-XR, 
supporting experimental trials and enabling the evaluation of relevant system KPIs. 

Keywords 5G/6G, Augmented Reality (AR), Virtual Reality (VR), Holographic Communications, 
User Plane, Control Plane, Multimedia Functions, Media Synchronisation. 

 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 2 of 82 © 2023-2025 6G-XR Consortium 

 
Document Revision History 

Version Date Description of change List of contributor(s) 

V0.1 27/02/2025 Table of contents Roberto Viola (VICOM) 

V0.2 20/06/2025 First draft All partners (see authors) 

V0.3 26/06/2025 Version with comments from external 
reviewers 

Valerio Frascolla (INTEL), Hemalatha 
Vulchi (IT) 

V0.4 03/07/2025 Consolidated version after addressing 
comments from external reviewers 

All partners (see authors) 

V0.5 14/07/2025 Version with comments from technical 
manager 

Mohammed Al-Rawi (IT) 

V1.0 24/07/2025 Final version All partners (see authors) 

 

  



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 3 of 82 © 2023-2025 6G-XR Consortium 

DISCLAIMER 

      

The 6G-XR (6G eXperimental Research infrastructure to enable next-generation XR services) project has 
received funding from the Smart Networks and Services Joint Undertaking (SNS JU) under the 
European Union’s Horizon Europe research and innovation programme under Grant Agreement No 
101096838. This work has received funding from the Swiss State Secretariat for Education, Research, 
and Innovation (SERI). 

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect 
those of the European Union. Neither the European Union nor the granting authority can be held 
responsible for them. 

COPYRIGHT NOTICE 

© 2023 - 2025 6G-XR Consortium 

Project co-funded by the European Commission in the Horizon Europe Programme 

Nature of the deliverable: R 

Dissemination Level 

PU 
Public, fully open, e.g. web (Deliverables flagged as public will be automatically 
published in CORDIS project’s page) 

✓ 

SEN Sensitive, limited under the conditions of the Grant Agreement   

Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444  

Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444  

Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444  

* R: Document, report (excluding the periodic and final reports)  

DEM: Demonstrator, pilot, prototype, plan designs  

DEC: Websites, patents filing, press & media actions, videos, etc. 

DATA: Data sets, microdata, etc. 

DMP: Data management plan 

ETHICS: Deliverables related to ethics issues.  

SECURITY: Deliverables related to security issues 

OTHER: Software, technical diagram, algorithms, models, etc.  

 

https://digital-strategy.ec.europa.eu/en/policies/smart-networks-and-services-joint-undertaking
https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe_en
https://www.sbfi.admin.ch/sbfi/en/home.html
https://www.sbfi.admin.ch/sbfi/en/home.html
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 4 of 82 © 2023-2025 6G-XR Consortium 

EXECUTIVE SUMMARY 

This document constitutes the final deliverable (D3.2) of Work Package 3 (WP3) – “XR Enablers” within 

the 6G-XR project. The objective of D3.2 is to explain the latest iterations in the development and 

deployment of the Virtual Network Functions (VNFs) for eXtended Reality (XR), envisioned within the 

overall WP3 activities. 

These VNFs are intended to be fundamental components of both the network user plane and the 

control plane of a communication system, facilitating real-time holographic communications, 

encompassing Virtual Reality (VR) and Augmented Reality (AR). Consequently, they are essential for 

the implementation of three of the five use cases (UCs) planned within the 6G-XR project (refer to D1.1 

[1] for additional information): 

• UC1 - Resolution Adaptation or Quality on Demand. 

• UC2 - Routing to the Best Edge. 

• UC3 - Control Plane Optimisation. 

The integration of these VNFs into the aforementioned three UCs is executed at the 6G-XR South Node 

test facilities, specifically 5TONIC (Madrid, Spain) and i2CAT (Barcelona, Spain). 

D3.2 provides a detailed description of the final versions of the XR Enablers, including the hardware 

and software resources utilised for their development, as well as a comparison with their first versions 

described in D3.1 [2]. 

The XR Enablers encompass functionalities such as multi-sensor volumetric capture and 

reconstruction, cloud/edge XR processing, adaptive and low-latency XR delivery, multi-modal 

synchronisation, session management, and media orchestration. Enablers pertaining to infrastructure 

configuration and a KPI monitoring system are also included in this final report to furnish a complete 

overview of the integration of the XR Enablers and their interoperability with the communication 

infrastructure. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 5 of 82 © 2023-2025 6G-XR Consortium 

TABLE OF CONTENTS 

Disclaimer ................................................................................................................................................. 3 

Copyright notice ....................................................................................................................................... 3 

EXECUTIVE SUMMARY .................................................................................................................. 4 

TABLE OF CONTENTS .................................................................................................................... 5 

LIST OF FIGURES ........................................................................................................................... 7 

LIST OF TABLES ............................................................................................................................. 9 

ABBREVIATIONS ......................................................................................................................... 10 

1 INTRODUCTION ............................................................................................................ 12 

1.1 Objectives of the deliverable .................................................................................................. 12 

1.2 Structure of the deliverable.................................................................................................... 13 

1.3 Target audience of the deliverable......................................................................................... 13 

2 END-TO-END DIAGRAM OF COMMUNICATIONS ............................................................ 14 

2.1 VR user plane .......................................................................................................................... 14 

2.2 AR control plane ..................................................................................................................... 15 

3 MULTI-SENSOR VOLUMETRIC RECONSTRUCTION .......................................................... 17 

3.1 Video capture ......................................................................................................................... 17 

3.2 Video reconstruction .............................................................................................................. 19 

4 CLOUD/EDGE XR PROCESSING AND SCALABILITY........................................................... 22 

4.1 Selective Forwarding Unit....................................................................................................... 22 

4.2 Multipoint Control Unit .......................................................................................................... 25 

4.3 Remote Renderer ................................................................................................................... 30 

5 ADAPTIVE LOW-LATENCY XR DELIVERY ......................................................................... 36 

5.1 Native player ........................................................................................................................... 36 

5.2 WebRTC streaming to web player .......................................................................................... 38 

5.3 DASH streaming to web player ............................................................................................... 43 

6 MULTI-MODAL SYNCHRONISATION .............................................................................. 49 

6.1 Clock synchronisation ............................................................................................................. 49 

6.2 Media synchronisation ........................................................................................................... 50 

7 SESSION MANAGEMENT AND XR MEDIA ORCHESTRATION ............................................ 55 

7.1 Holo-orchestrator ................................................................................................................... 55 

7.2 IMS session manager .............................................................................................................. 57 

8 INFRASTRUCTURE CONFIGURATION ............................................................................. 60 

8.1 XR application traffic requirements extraction ...................................................................... 60 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 6 of 82 © 2023-2025 6G-XR Consortium 

8.2 Machine Learning-Based Edge Continuum Enabler ............................................................... 61 

9 KPI AND TELEMETRY .................................................................................................... 69 

9.1 Monitoring system .................................................................................................................. 69 

10 SUMMARY ................................................................................................................... 77 

11 REFERENCES ................................................................................................................. 78 

APPENDIX A - R32 LIGHT-FIELD CAMERA FACTSHEET ................................................................... 79 

 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 7 of 82 © 2023-2025 6G-XR Consortium 

LIST OF FIGURES 

FIGURE 1. COMPONENTS FOR VR USER PLANE. ...................................................................................... 15 

FIGURE 2. IMS DATA CHANNEL ARCHITECTURE DESIGN. ........................................................................ 16 

FIGURE 3. DEMONSTRATION OF THE 6G XR VOLUMETRIC CAPTURE AND RECONSTRUCTION PIPELINE AT 
THE 6G-XR GENERAL ASSEMBLY. (LEFT) THE VOLUMETRIC CAPTURER IS SET UP AT RAYTRIX OFFICES 
IN KIEL, GERMANY. (RIGHT) RAYTRIX IS PRESENTING A LIVE VOLUMETRIC HOLOPORTED USER IN 
OULU, FINLAND............................................................................................................................... 17 

FIGURE 4. HIGH-LEVEL COMMUNICATION ARCHITECTURE WHEN ADOPTING A SELECTIVE FORWARDING 
UNIT. ............................................................................................................................................... 22 

FIGURE 5. SFU ARCHITECTURE. ............................................................................................................... 23 

FIGURE 6. HIGH-LEVEL SCHEMES OF SESSIONS WITH CLIENTS CONNECTING TO TWO DIFFERENT SFUS. 24 

FIGURE 7. POSITION- AND FOV-AWARE DELIVERY MODULE OF THE SFU................................................ 24 

FIGURE 8. MCU ARCHITECTURE............................................................................................................... 27 

FIGURE 9. LOGICAL MODULES OF THE REMOTE RENDERER AND VIDEO PLAYER. ................................... 31 

FIGURE 10. REMOTE RENDERER RUNNING AS A STANDALONE APPLICATION WITH A SYNTHETIC POINT 
CLOUD IN THE VR SCENE. ................................................................................................................ 33 

FIGURE 11. REMOTE RENDERING RUNNING AS A STANDALONE APPLICATION WITH A 3D AVATAR IN THE 
VR SCENE. ....................................................................................................................................... 33 

FIGURE 12. COMPONENTS OF THE WEBRTC STREAMING ENABLER. ....................................................... 38 

FIGURE 13. COMMUNICATIONS FOR WEBRTC STREAMING BETWEEN THE REMOTE RENDERER AND 
WEBRTC VIDEO PLAYER. ................................................................................................................. 40 

FIGURE 14. WEBRTC VIDEO PLAYER IN LAPTOP BROWSER. (LEFT) VR SCENE. (RIGHT) LIVE VOLUMETRIC 
HOLOPORTATION............................................................................................................................ 41 

FIGURE 15. WEBRTC VIDEO PLAYER IN LAPTOP BROWSER WITH VR SIMULATOR. ................................. 42 

FIGURE 16. COMPONENTS OF THE DASH STREAMING ENABLER. ............................................................ 44 

FIGURE 17. COMMUNICATIONS FOR DASH STREAMING BETWEEN THE REMOTE RENDERER AND WEBRTC 
VIDEO PLAYER. ................................................................................................................................ 45 

FIGURE 18. DASH PLAYER BASED ON DASH.JS. ....................................................................................... 47 

FIGURE 19. HIGH-LEVEL OVERVIEW OF HOLO ORCHESTRATOR MODULES AND SERVICES. ..................... 56 

FIGURE 20. DEMO SETUP ENABLING AN XR-APPLICATION TOGETHER WITH BACKGROUND TRAFFIC. ... 60 

FIGURE 21. EDGE CONTINUUM ENABLER HIGH-LEVEL DIAGRAM. .......................................................... 62 

FIGURE 22. REAL PATTERN FOR A WEEKDAY FROM 09:05 TO 22:00. ...................................................... 64 

FIGURE 23. SYNTHETIC PATTERN FOR ONE WEEKDAY FROM 09:05 TO 22:00. ........................................ 64 

FIGURE 24. SYNTHETIC PATTERN FOR AN ENTIRE WEEK FROM 23-05-2025 09:05 TO 30-05-2025 22:00. 64 

FIGURE 25. FORECASTED VALUES AGAINST REAL DATA AT MADRID NODE FROM 23-05-2025 09:05 TO 30-
05-2025 22:00. ................................................................................................................................ 65 

FIGURE 26. FORECASTED VALUES AGAINST SYNTHETIC DATA AT MADRID NODE FROM 23-05-2025 09:05 
TO 30-05-2025 22:00. ...................................................................................................................... 65 

FIGURE 27. FINAL HARDWARE AND SOFTWARE. .................................................................................... 67 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 8 of 82 © 2023-2025 6G-XR Consortium 

FIGURE 28. HIGH-LEVEL ARCHITECTURE OF THE METRICS MEASUREMENT AND REGISTRATION SYSTEM.
 70 

FIGURE 29. HIGH-LEVEL WORKFLOW BETWEEN THE HOLO ORCHESTRATOR AND METRICS MONITORING 
SUB-SYSTEM. .................................................................................................................................. 71 

FIGURE 30. NEW MODULES OF THE METRICS MONITORING SUB-SYSTEM TO NOTIFY ABOUT ALERTS. .. 71 

FIGURE 31. GRAFANA DASHBOARDS SHOWING COLLECTED METRICS FROM XR ENABLERS. .................. 75 

 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 9 of 82 © 2023-2025 6G-XR Consortium 

LIST OF TABLES 

TABLE 1. COMPARISON OF THE FIRST AND FINAL RELEASES OF THE VIDEO CAPTURE. ........................... 19 

TABLE 2. COMPARISON OF THE FIRST AND FINAL RELEASES OF THE VIDEO RECONSTRUCTION. ............ 21 

TABLE 3. COMPARISON OF THE FIRST AND FINAL RELEASES OF THE SFU. ............................................... 25 

TABLE 4. HARDWARE EMPLOYED TO DEPLOY AND TEST THE REMOTE RENDERER. ................................ 31 

TABLE 5. SOFTWARE DEPENDENCIES OF THE REMOTE RENDERER AND THEIR VERSIONS....................... 32 

TABLE 6. ENVIRONMENT FOR THE DEPLOYMENT OF THE CONTAINERISATION REMOTE RENDERER. ..... 34 

TABLE 7. COMPARISON OF THE FIRST AND FINAL RELEASES OF THE REMOTE RENDERER. ..................... 34 

TABLE 8. COMPARISON OF THE FIRST AND FINAL RELEASES OF THE NATIVE PLAYER. ............................ 37 

TABLE 9. SOFTWARE VERSIONS USED IN THE SIGNALLING SERVER. ........................................................ 41 

TABLE 10. SOFTWARE VERSIONS USED IN THE WEBRTC PLAYER............................................................. 42 

TABLE 11. COMPARISON OF THE FIRST AND FINAL RELEASES OF THE WEBRTC STREAMING ENABLER. .. 43 

TABLE 12. SOFTWARE VERSIONS USED IN THE HTTP SERVER. ................................................................. 46 

TABLE 13. SOFTWARE VERSIONS USED IN DASH PLAYER. ....................................................................... 46 

TABLE 14. COMPARISON OF THE FIRST AND FINAL RELEASES OF THE DASH STREAMING ENABLER. ...... 47 

TABLE 15. CLOCK SYNCHRONISATION WITHIN XR ENABLERS.................................................................. 49 

TABLE 16. IMPLEMENTATION OF MEDIA SYNCHRONISATION MECHANISMS WITHIN XR ENABLERS. ..... 51 

TABLE 17. LATENCY WITH VIDEO STREAM AT 1080P/60FPS/10MBPS ..................................................... 53 

TABLE 18. COMPARISON OF THE FIRST AND FINAL RELEASES OF THE HOLO-ORCHESTRATOR. ............... 57 

TABLE 19. COMPARISON OF THE FIRST AND FINAL RELEASES OF THE IMS SESSION MANAGER. ............. 59 

TABLE 20. COMPARISON OF THE FIRST AND FINAL RELEASES OF THE XR APPLICATION TRAFFIC 
REQUIREMENTS EXTRACTION. ........................................................................................................ 61 

TABLE 21. KPIS OF THE NATIVE PLAYER COMPONENT. ........................................................................... 71 

TABLE 22. KPIS OF THE SFU COMPONENT. .............................................................................................. 72 

TABLE 23. KPIS OF THE MCU COMPONENT. ............................................................................................ 72 

TABLE 24. KPIS FOR WEBRTC STREAMING FROM THE REMOTE RENDERER TO THE WEBRTC WEB PLAYER.
 73 

TABLE 25. KPIS FOR DASH STREAMING FROM THE REMOTE RENDERER TO THE DASH WEB PLAYER...... 73 

TABLE 26. KPIS FOR THE HOLO ORCHESTRATOR COMPONENT. .............................................................. 74 

TABLE 27. KPIS FOR THE ML-BASED EDGE CONTINUUM ENABLER .......................................................... 74 

TABLE 28. COMPARISON OF THE FIRST AND FINAL RELEASES OF THE MONITORING SYSTEM. ............... 75 

 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 10 of 82 © 2023-2025 6G-XR Consortium 

ABBREVIATIONS 

2D  2-dimensional 

3D  3-dimensional 

5G  Fifth Generation 

6DoF  6 Degrees of Freedom 

AF  Application Function 

API Application Programming 
Interface 

AR  Augmented Reality 

ATSSS Access Traffic Steering-
Switching-Splitting 

AS  Application Server 

BE  Best Effort 

CM  Clock Manager 

ConM  Index / Connection Manager 

CP  Control Plane 

CPU  Central Processing Unit 

CUDA Compute Unified Device 
Architecture 

DASH Dynamic Adaptive Streaming 
over HTTP 

DASH IF DASH Industry Forum 

DCSF Data Channel Signalling 
Function 

E2E  End-to-End 

EC  European Commission 

EU  European Union 

FoV  Field of View 

fps  Frames Per Second 

GPU  Graphics Processing Unit 

GUI  Graphical User Interface 

HTTP  Hypertext Transfer Protocol 

ICE Interactive Connectivity 
Establishment 

IEAP Intelligent Edge Application 
Platform 

IMS  IP Multimedia Subsystem 

IMS-AS  IMS Application Server 

IMSDC  IMS Data Channel 

IP  Internet Protocol 

IPU  Image Processing Unit 

KPI  Key Performance Indicator 

LF-SDK  Light-Field SDK 

LoD  Level of Detail 

LoS  Level of Service 

LSTM  Long-Short Term Memory 

LTS  Long Term Support 

MCU  Multipoint Control Unit 

ML  Machine Learning 

MLA  Microlens Array  

MLOPs  ML Operations 

MNO  Mobile Network Operator 

MoQ Media over QUIC 

MPD Media Presentation 
Description 

MU  Media Unit 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 11 of 82 © 2023-2025 6G-XR Consortium 

NaaS  Network-as-a-Service 

NIC  Network Interface Controller 

NTP  Network Time Protocol 

OS  Operating System 

PC  Personal Computer 

QoD  Quality on Demand 

QoE  Quality of Experience 

QoS  Quality of Service 

RAM  Random Access Memory 

RAN  Radio Access Network 

REST Representational State 
Transfer 

RGBD  Red Green Blue Depth 

RoI  Region of Interest 

RoQ RTP over QUIC 

RTCP Real-time Transport Control 
Protocol 

RTP  Real-time Transport Protocol 

SDK  Software Development Kit 

SDP  Session Description Protocol 

SFU  Selective Forward Unit 

SM  Session Manager 

SNS  Smart Networks and Services 

SRTP  Secure RTP 

TCP  Transmission Control Protocol 

TSN  Time-Sensitive Networking 

UC  Use Case 

UDP  User Datagram Protocol 

UE  User Equipment 

UM  User Manager 

UP  User Plane 

UPF  User Plane Function 

UTC  Universal Time Coordinated  

vCPU  virtual CPU 

VM  Virtual Machine 

VNF  Virtual Network Function 

VR  Virtual Reality 

WebRTC Web Real-Time 
Communication 

WP  Work Package 

WTSN  Wireless TSN 

XR  eXtended Reality



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 12 of 82 © 2023-2025 6G-XR Consortium 

1 INTRODUCTION 

The main purpose of D3.2 is to summarise the outcomes of Work Package 3 (WP3) “XR Enablers” of 
the “6G eXperimental Research infrastructure to enable next-generation XR services” (6G-XR) project. 
The overarching objective of WP3 is the creation of enablers for XR multimedia processing, 
encompassing both AR and VR technologies. Consequently, each task within WP3 is dedicated to the 
implementation of specific enablers or multimedia functionalities, addressing various dimensions of 
the End-to-End (E2E) media pipeline as follows: 

• Task 3.1 (T3.1) concentrates on volumetric capture sensors and the associated reconstruction 
processes. 

• Task 3.2 (T3.2) capitalises on edge computing resources to facilitate the scalability of 
multimedia processing capabilities. 

• Task 3.3 (T3.3) employs heterogeneous communication protocols to deliver multimedia 
content to users employing devices with diverse processing and interaction capabilities. 

• Task 3.4 (T3.4) provides the necessary clock and media synchronisation capabilities to ensure 
a consistent and coherent experience for users participating in the media communications. 

• Task 3.5 (T3.5) focuses on the orchestration of media sessions. 

• Task 3.6 (T3.6) enables the collection of KPIs relevant to multimedia processing, intended for 
subsequent evaluation or real-time system adjustments. 

This document outlines the final implementation of the XR Enablers, representing the multimedia 
functions within the E2E media pipeline. The XR Enablers, described in a preliminary implementation 
in D3.1 published in project month 18 (M18), have been further refined and developed throughout the 
duration of WP3 (M19-M31) and, finally, have been deployed and integrated with the computing 
infrastructures provided by WP2 “Networking and Computing Enablers”. 

Furthermore, the solutions developed within WP3 are instrumental in demonstrating three UCs 
pertaining to the VR user plane (UC1 and UC2, detailed in D1.1 [1]) and the AR control plane (UC3, 
detailed in D1.1 [1]). These UCs are validated within WP6 “Validation of Holographic and 3D Digital 
Twin Use cases”. 

1.1 OBJECTIVES OF THE DELIVERABLE  

The objectives of D3.2 are to: 

• Describe the user plane and data plane communications that have been developed and integrated, 
to be employed for demonstrating three WP6 UCs (UC1 and UC2 focus on the VR user plane, while 
UC3 focuses on the AR control plane). 

• Detail the progress and describe the final versions of the developed multimedia functions, i.e., the 
XR Enablers, essential for the E2E media pipeline. For each XR Enabler, a general description of 
the component is provided, along with relevant information on the hardware and software utilised 
for its development, where applicable. A comparison with the previous release described in D3.1 
is also provided. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 13 of 82 © 2023-2025 6G-XR Consortium 

• Present the components responsible for delivering synchronisation capabilities across the 
participants of a media session, as well as the components designed for orchestrating the various 
functions within the E2E media pipeline. 

• Describe the infrastructure configuration enablers and the monitoring system employed by the 
XR Enablers. This includes how network resources are configured and how KPIs are collected from 
the different multimedia functions of the E2E media pipeline. 

1.2 STRUCTURE OF THE DELIVERABLE  

D3.2 is structured as follows: 

• Chapter 2 presents the implemented E2E communications to support the demonstration of three 
WP6 UCs. 

• Chapter 3 details the multi-camera capture system for generating volumetric video streams. 
Additionally, it describes the Edge-supported video reconstruction solution, which aids in 
enhancing the quality of the volumetric video through the fusion of multiple input streams. 

• Chapter 4 outlines the components intended for deployment on the cloud/edge infrastructure to 
achieve scalability and broader accessibility for XR services. These components encompass various 
media processing functionalities. 

• Chapter 5 describes the streaming protocols and video players utilised for delivering media to the 
end user's device. The device may employ a native player with capabilities for volumetric capture, 
6 Degrees of Freedom (6DoF) interaction, and content consumption, or a streamlined web-based 
player where volumetric capture functionality is not available. 

• Chapter 6 presents the activities on clock and media synchronisation mechanisms, meant for 
ensuring a synchronised XR experience among participants and to facilitate the monitoring of 
multimedia performance metrics. 

• Chapter 7 details the Holo Orchestrator, designed for the VR user plane and the IP Multimedia 
Subsystem (IMS) session manager intended for the AR control plane. 

• Chapter 8 describes the infrastructure configuration mechanisms employed for allocating 
infrastructure resources and/or selecting the appropriate ones to execute the multimedia 
processing components. 

• Chapter 9 reports on the monitoring system utilised to evaluate performance metrics across the 
E2E media pipeline. 

• Finally, Chapter 10 concludes the document with a comprehensive summary of this report. 

1.3 TARGET AUDIENCE OF THE DELIVERABLE 

This deliverable is a public report that targets the project consortium and its stakeholders, i.e., 
academic and research organisations, industries active in the field of focus of 6G-XR, the EU 
commission services, and the general public. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 14 of 82 © 2023-2025 6G-XR Consortium 

2 END-TO-END DIAGRAM OF COMMUNICATIONS 

XR services are typically developed by strategically chaining together building blocks or Application 

Functions (AFs) along an E2E multimedia pipeline, spanning from content capture to presentation on 

the end device. Within Mobile Network Operator (MNO) networks, these XR AFs can be integrated 

into either the Control Plane (CP), where they manage session control and coordination, or the User 

Plane (UP), where they handle media processing, communication, and content delivery. 

The 6G-XR project, through its WP3, provides a set of XR Enablers that operate across both the UP and 

CP domains. These enablers are deployed over a distributed cloud-to-edge continuum infrastructure, 

as outlined in WP2, and leverage resources from the Radio Access Network (RAN) and core network, 

as described in WP4. The architecture and role of the VR user plane and the AR control plane are 

detailed in the following subsections. 

2.1 VR USER PLANE 

Figure 1 provides a high-level overview of an E2E multimedia pipeline designed to support real-time 

multiuser holographic communication services in shared VR scenarios. This pipeline integrates a 

sequence of XR Enablers responsible for media processing in the UP. The key XR Enablers are briefly 

introduced as follows: 

• Volumetric Capture and Reconstruction: UP AFs deployed at the User Equipment (UE) with 

optional support of edge/cloud processing. Their role is to integrate volumetric capture 

sensors and reconstruction capabilities. XR systems commonly utilise real-time capture 

sensors—either single or multiple—which often support dynamic adjustment of resolution 

and granularity, even during an active session. 

• Selective Forwarding Unit (SFU): an UP AF deployed as a cloud or edge component. It is 

responsible for forwarding media streams from source clients to their intended destination 

clients. 

• Multipoint Control Unit (MCU): an UP AF also deployed as a cloud or edge component. In 

addition to forwarding media streams between clients, it offers advanced capabilities such as 

mixing and transcoding, enabling the delivery of personalised, unified streams to each target 

client. 

• Remote Renderer: an UP AF deployed as a cloud or edge component. Acting as a surrogate 

player in the network, it renders 2-dimensional (2D) or 360° video streams and delivers them 

to lightweight client players. 

• Native (full-fledged) or web (lightweight) players: UP AFs deployed at the UE. They are 

software components used by clients for media content creation and/or consumption, as well 

as for handling required user interactions and communicating with other remote users. 

• Holo Orchestrator: an UP AF dedicated to orchestration and session management, deployed 

as a cloud component. It manages session control and coordinates with edge orchestration 

entities to ensure efficient resource use and service delivery. 

• Monitoring System: a telemetry AF intended for monitoring, deployed as a cloud component. 

It collects and hosts key Quality of Service (QoS) metrics, resource usage data, and activity logs 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 15 of 82 © 2023-2025 6G-XR Consortium 

(i.e., telemetry), which are essential for evaluating session performance and enabling dynamic 

adaptations. 

The streaming and communication protocols, along with the control protocols used to exchange 

metadata related to session management with the Holo Orchestrator, are integral components of the 

E2E VR platform, as shown in Figure 1. 

 

Figure 1. Components for VR User Plane. 

2.2 AR CONTROL PLANE 

Figure 2 presents a high-level overview of the holographic communication service enabled by the 

integration of an AR application with the IMS, which forms part of the network CP. The figure illustrates 

the architecture of the IMS data channel, highlighting its key components and communication flows. 

The data channel elements are distributed across IMS and public cloud infrastructures. The IMS cloud 

components are responsible for managing the signalling between the consumer UE and the AR media 

servers. A signalling server, deployed in the public cloud, facilitates the establishment of connectivity 

between the Data Channel Signalling Function (DCSF), the media server, and the Agent UE through the 

exchange of WebSocket messages. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 16 of 82 © 2023-2025 6G-XR Consortium 

 

Figure 2. IMS data channel architecture design. 

To enable the exchange of holographic data through the UP, a set of preliminary actions must be 

executed by the CP to ensure proper communication between the involved network components. 

The information flow depicted in Figure 2 unfolds across six key steps: 

1. The process begins with the agent (producer) registering with the signalling server session 

manager to initiate the session and await the consumer (viewer) user device to initiate a 

standard IMS call to the IMS Data Channel (IMSDC) service. 

2. Following the call initiation, the consumer device downloads the AR-enabled application from 

the IMS Application Server (IMS-AS), which is represented through the native phone dialer on 

the viewer’s device. 

3. The signalling server then receives a registration request for the holographic call. 

4. In response, it automatically retrieves information from the available data channel 

reconstruction servers to identify and connect to the most optimal one based on current 

conditions. 

5. Once the connection is determined, the signalling server notifies the agent user of the 

established link, prompting the exchange of Session Description Protocol (SDP) messages and 

initial session parameters. 

6. Once the session has been established, the agent gains access to the selected reconstruction 

server and transitions to the UP for the media transmission. The 2D/ 3-dimensional (3D) video 

data uses the Web Real-Time Communication (WebRTC) data channel, while the audio is 

streamed through IMS. Both 2D/3D video data and audio are synchronised. 

1 

2 

3 

4 

5 6 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 17 of 82 © 2023-2025 6G-XR Consortium 

3 MULTI-SENSOR VOLUMETRIC RECONSTRUCTION 

This section presents the 6G XR Volumetric Capturer enhancements since the deliverable D3.1. To 
maintain clarity and avoid redundancy, this section highlights the principal advancements in the 
capture and reconstruction components. These include enhancements to camera hardware and optics, 
the development of novel calibration and data fusion algorithms, and the implementation of a real-
time Volumetric Reconstruction application, which was demonstrated during the 6G-XR General 
Assembly held in Oulu, Finland, on 28 January 2025, as shown in Figure 3. References to D3.1 are used 
only to clarify baseline configurations. Section 3.1 (“Video Capture”) details the redesigned 
multi‑camera layout, upgraded optics, and the introduction of an automated extrinsic‑calibration 
pipeline plus aberration‑correction filtering. Section 3.2 (“Video Reconstruction”) covers the new 
real‑time Volumetric Reconstruction application, capable of integrating heterogeneous light‑field 
streams at ≤ 30 fps with ≤ 100 ms overall latency, and describes enhancements to intrinsic calibration 
and guided‑filter smoothing. Wherever relevant, we summarise the state at D3.1, then contrast it with 
the finalised D3.2 implementation in a concise evolution table. 

Figure 3. Demonstration of the 6G XR volumetric capture and reconstruction pipeline at the 6G-XR General 
Assembly. (Left) The Volumetric Capturer is set up at Raytrix offices in Kiel, Germany. (Right) Raytrix is 

presenting a live volumetric holoported user in Oulu, Finland. 

3.1 VIDEO CAPTURE 

The Volumetric Capturer acquires four synchronised light-field streams and converts them into 
RGB + depth (RGBD) frames for downstream volumetric reconstruction. In D3.1, four identical R32v1 
light field cameras arranged symmetrically provided the capture coverage. Since then, the gained 
experience with the R32v1 has allowed for substantial design updates, which have been implemented 
in the new R32v2 cameras. 

3.1.1 Description of the component 

Since D3.1, we have introduced version 2 of the R32 in a new “3 + 1” camera arrangement. Three 
R32v2 light field cameras are spaced evenly at 120° intervals around the subject, ensuring 
comprehensive full-body coverage. The fourth R32v2 camera is positioned front-facing, directly above 
one of the body cameras, explicitly optimised for facial capture. This dedicated face camera provides 
notably higher lateral and depth resolution (< 5 mm XYZ), due to its smaller capture area 
(500 mm × 333 mm), which is critical for accurately capturing subtle facial expressions—areas 
naturally prioritised by human perception during interactions. In contrast, general body language 
occurs at significantly larger spatial scales, tolerating the slightly lower lateral resolution (< 10 mm XYZ) 
provided by the three body-oriented cameras. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 18 of 82 © 2023-2025 6G-XR Consortium 

The transition from R32v1 to R32v2 includes targeted hardware adjustments informed by practical 
experience with the earlier model, which are: 

• The microlens array pitch was increased from 125 µm to 500 µm, and the aperture was 
narrowed from f/1.8 to f/3.8. These modifications intentionally reshape the redundancy-vs-
depth curve of the camera, shifting the optimal focus plane from the traditional redundancy 
of 2 to a redundancy of 4. Contrary to standard plenoptic 2.0 design principles, which typically 
aim to maximise peak resolution at one depth plane, this approach sacrifices peak sharpness 
to maintain a consistently high resolution (within 30% of its peak) across the entire ±1 m depth 
range (total 2 m depth of field). Although larger microlenses inherently introduce some 
additional aberrations, the reduced aperture size (smaller f-number) effectively mitigates 
overall optical aberrations compared to the previous design. 

• A guided-filter post-processing stage is integrated into the RGBD extraction pipeline to reduce 
residual microlens-induced depth artefacts, improving the immediate quality of RGBD frames 
for subsequent volumetric reconstruction.  

• The focal lengths of the main lenses were increased to 35 mm for the body and 105 mm for 
the face cameras. The reduced aperture enabled this focal-length adjustment, which further 
reduces aberrations and their adverse effects on depth estimation. This simplifies calibration 
while maintaining the capability to capture large fields of view even in confined spaces. 

These hardware adaptations significantly enhanced the performance of the Volumetric Capturer, 
improving its depth resolution from ≤ 50 mm to ≤ 10 mm for body cameras and ≤ 5 mm for the 
dedicated face camera. 

3.1.2 Final hardware 

• Raytrix R32v2 cameras (×4):  

o Onsemi XGS 32.4 MP global‑shutter sensors (3.2 µm pixels, 36 fps), unchanged from 
D3.1 for proven reliability. 

o Thermal‑stabilized, rigid housing and custom lens mount, unchanged from D3.1 for 
long‑term stability. 

o Improved microlens array: 500 µm pitch Microlens Array (MLA) with f/3.8 aperture. 

o New main lens: focal length increased to 35 mm (body)/ 105 mm (face).  

• Connectivity to Edge: CoaXPress 12.5 Gbps links (≤ 30 m) with PoCXP power; FPGA timing 
distributor provides sub‑µs sync, unchanged from D3.1. 

3.1.3 Final software 

• GeniCam interface, unchanged from D3.1. 

3.1.4 Evolution compared to the previous release 

Between D3.1 and D3.2, the Volumetric Capturer was upgraded with a specialised “3+1” camera 
arrangement optimised for improved facial detail. The redesigned R32v2 cameras introduced larger 
microlenses, a narrower aperture, and longer focal-length lenses, resulting in significantly enhanced 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 19 of 82 © 2023-2025 6G-XR Consortium 

depth resolution. A comparison of the changes from R32v1 to R32v2 is presented in Table 1 and the 
factsheet of R32v2 is attached as Appendix A - R32 light-field camera factsheet.  

Table 1. Comparison of the first and final releases of the Video Capture. 

Feature First release (R32v1) Final release (R32v2) 

Camera 

arrangement 

Four identical R32v1 

cameras (90° intervals) 

Three body cameras (120° intervals) + one 

dedicated face camera 

MLA 125 µm pitch, f/1.8 

aperture 

Redesigned MLA: 500 µm pitch, narrower 

f/3.8 aperture 

Redundancy-

vs-depth 

curve 

Redundancy increases 

from 2 to 12 times over 

the capture range 

Redundancy increases from 3.5 to 4.5 times 

over the capture range 

Lateral 

resolution 

philosophy 

Maximise peak resolution Maintain sufficient resolution until the 

capture range edges 

Depth 

resolution 

≤ 50 mm  ≤ 10 mm (body), ≤ 5 mm (face) 

Main lens 

focal length 

24.5 mm 35 mm (body), 105 mm (face) 

3.2 VIDEO RECONSTRUCTION 

The video reconstruction component integrates multiple RGBD streams produced by the Volumetric 
Capturer into a single coherent volumetric representation in real-time. 

3.2.1 Description of the component 

Since D3.1, we have developed a dedicated Volumetric Reconstruction application capable of 
combining heterogeneous RGBD streams from multiple synchronised light-field cameras into a unified 
volumetric output. This application addresses practical challenges, notably efficient computational 
load balancing and synchronisation of RGBD streams from cameras assigned to one or more Graphic 
Processing Units (GPUs). Due to processing variability, RGBD frames from different streams or GPUs 
can arrive asynchronously. Thus, a dedicated resynchronisation mechanism was introduced, ensuring 
that all camera streams are temporally aligned with minimal latency overhead before fusion. 

The system supports adaptive reconstruction resolutions, dynamically addressing network bandwidth 
limitations or computational congestion. This capability also allows prioritisation of critical regions of 
interest, such as faces, with higher detail, while simultaneously reconstructing body regions at lower 
resolutions when needed. The reconstruction pipeline is highly scalable, supporting an arbitrary 
number of cameras with different frame rates, resolutions, or types, and was demonstrated at the 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 20 of 82 © 2023-2025 6G-XR Consortium 

internal General Assembly in Oulu in January 2025, showcasing stable real-time reconstruction at 
≤ 30 fps with E2E latency ≤ 100 ms. 

In addition to stream synchronisation and fusion, significant enhancements were introduced in 
intrinsic and extrinsic calibration algorithms. The extrinsic calibration pipeline was automated, 
dramatically reducing calibration duration (typically < 1 min). The intrinsic calibration methodology 
was improved based on extensive analysis of optical aberrations in wide-angle configurations, 
significantly enhancing accuracy. 

Lastly, the guided-filter post-processing stage, mentioned in Section 3.1, mitigates depth artefacts 
arising from optical aberrations. This edge-preserving filter enhances the final volumetric 
reconstruction quality by smoothing depth inaccuracies without compromising critical geometric 
detail. 

3.2.2 Final hardware 

• Compute configuration: The edge server is equipped with one NVIDIA RTX 4090 GPU per 
camera, each hosting an Image Processing Unit (IPU) instance, ensuring real‑time RGBD 
extraction, and an Euresys Coaxlink Quad CXP-12 frame grabber (unchanged from D3.1). 

3.2.3 Final software 

The Volumetric Reconstruction application is a custom software system that transforms multiple 
synchronised RGBD streams into a unified volumetric representation in real time. It is designed for 
scalability, adaptability, and integration, supporting standalone use and future deployment within the 
broader 6G XR stack. 

Key software components include: 

• Calibration Module 

This module ensures accurate geometric alignment across all RGBD streams. It supports both 
intrinsic and extrinsic calibration: 

Intrinsic calibration models the internal optics of each camera, correcting for lens distortion 
and aberration. This improves the accuracy of depth maps, particularly at the image periphery. 

Extrinsic calibration computes the position and orientation of each camera within the Capturer 
to ensure proper spatial alignment during data fusion. The new pipeline is fully automated, 
completes in < 1min, and achieves accuracy at or below the native depth resolution (~10 mm). 

• Image Processing Unit: 

Each incoming raw light-field stream is processed by a dedicated IPU, which converts the 
plenoptic input into calibrated RGB + depth (RGBD) frames in real time. This process includes 
optical decoding, disparity estimation, and view synthesis. IPUs run on GPU and are optimised 
for high throughput with minimal latency. 

A real-time (GPU-based) guided filter smooths depth maps, reducing microlens-induced noise 
while preserving fine geometric detail in the fused output. 

The system supports dynamic Level-of-Detail, allowing higher fidelity for key regions (e.g., the 
face) while lowering detail in less critical areas to save bandwidth and computation. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 21 of 82 © 2023-2025 6G-XR Consortium 

• Stream Resynchronisation 

This layer aligns frames in time before fusion to compensate for asynchronous processing, 
especially when streams share GPUs. It ensures consistency with minimal added latency. 

This final version of the software was successfully demonstrated live at the January 2025 6G-XR 
General Assembly, sustaining ≤ 30 fps and < 100 ms E2E latency under realistic conditions. 

3.2.4 Evolution compared to the previous release 

Between D3.1 and D3.2, the video reconstruction component transitioned from a concept-level 
architecture to a robust, real-time application capable of multi-stream volumetric fusion. Key 
advancements include an automated calibration pipeline, per-stream RGBD extraction via dedicated 
IPUs, GPU load balancing with stream resynchronisation, and adaptive resolution handling for 
enhanced fidelity where needed. Together, these changes enable scalable and latency-optimised 
reconstruction with significantly higher spatial and temporal accuracy than the initial version. Table 2 
presents a comparison between the initial and final versions of the video reconstruction. 

Table 2. Comparison of the first and final releases of the video reconstruction. 

Feature First release Final release 

System 

status 

Conceptual prototype (no 

E2E integration) 

Fully integrated, real-time reconstruction 

pipeline 

Calibration Manual, structured wizard Fully automated extrinsic calibration, improved 

intrinsic modelling 

Stream 

handling 

Conceptual prototype Demonstrated per-stream resynchronisation 

for multi-GPU setups 

Latency / 

Frame rate 

Not defined ≤ 100 ms latency, ≤ 30 fps real-time output 

demonstrated 

 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 22 of 82 © 2023-2025 6G-XR Consortium 

4 CLOUD/EDGE XR PROCESSING AND SCALABILITY 

This section presents the final version of the XR Enablers related to cloud/edge XR processing, whose 

aim is to provide scalability and wider access to the XR services. The component modules or units are 

described in the following subsections. 

4.1 SELECTIVE FORWARDING UNIT 

4.1.1 Description of the component 

In traditional video conferencing services, SFUs are typically used for the exchange of multimedia 

information between the involved clients. 6G-XR has departed from a functional SFU (an outcome of 

the EU H2020 VR-Together project1), built on top of Node.js2, that enables multi-user holographic 

communications [3]. In particular, the SFU acts as a UP AF that manages the exchange of volumetric 

video and audio streams from origin to destination clients via TCP WebSocket connections by using 

socket.io3, as illustrated in Figure 4. A more detailed architecture of the SFU is provided in Figure 5. 

 

Figure 4. High-level communication architecture when adopting a Selective Forwarding Unit. 

 

1 https://vrtogether.eu/ 

2 https://nodejs.org/ 

3 https://socket.io/ 

https://vrtogether.eu/
https://nodejs.org/
https://socket.io/


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 23 of 82 © 2023-2025 6G-XR Consortium 

 

Figure 5. SFU Architecture. 

Diverse key innovations have been added to the SFU component in 6G-XR during its first and second 

periods. The main innovation in the first 6G-XR period, reported in D3.1 [2], can be summarised as:  

• The SFU has been virtualised (both as a Docker and as a Helm Chart), thus becoming a VNF that 

can be dynamically instantiated over the cloud continuum (e.g., on a selected edge server), 

under request, via enablers from WP2 (Edge Orchestration, see D2.1 [4] for further details).  

• Novel interfaces so that: (i) the Holo Orchestrator (Section 7.1) can identify and select specific 

instances of SFUs for running sessions, or even instantiate them, based on specific criteria (e.g., 

deployment domains, edge resources); and (ii) the SFU can be interfaced to other in-cloud 

VNFs, like an MCU (Section 4.2) and a Remote Renderer (Section 4.3). 

• The SFU can be decoupled into two independent modules/services: 

o Media Manager: responsible for forwarding the audio + video data between the 

involved clients. 

o Events Manager: responsible for forwarding relevant metadata between the involved 

clients, like their positions in the virtual space, or any other specific events that can be 

originated/triggered in the media session (e.g., interactions with the environment). 

The SFU is an UP AF just in charge of data forwarding, not performing any media processing tasks like 
stream multiplexing and/or transcoding. When adopting an SFU for a session with N clients, each client 
sends in uplink 1 media (audio + video) stream to the SFU and receives N-1 streams (the ones from all 
the rest clients) from the SFU. This also means that, in total, the SFU needs to send N*(N-1) streams in 
downlink, which typically becomes a scalability bottleneck.  

To overcome such bottleneck, two main innovations have been added to the SFU in the second 6G-XR 
period: 

• A modular distribution and deployment architecture has been devised so that more than 1 SFU 

can be concurrently enabled and used for a given media session, thus enhancing scalability 

(Figure 6). If more than 1 SFUs are adopted for a given session, then each client still sends its 

media streams to a unique SFU but may receive media streams from all the active SFUs. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 24 of 82 © 2023-2025 6G-XR Consortium 

Conducted tests have proven that the number of concurrent users per session when using >1 

SFU can be doubled compared to the usage of a single SFU. 

• New modules of the SFU have been developed, so that the relative positions and viewports, or 

Field of View (FoV), of each participant in the session are considered; that allows to decide 

whether their associated streams are to be forwarded to each destination or not. To achieve 

this, a visibility (v) matrix between the participants is built and dynamically updated, based on 

binary values (i.e., visible or not) based on specific and configurable viewport and distance 

thresholds. This is sketched in Figure 7, where it is shown that Client_5 and Client_6 are 

considered not visible (i.e. v=0) for Client_1, and thus their streams are not delivered to that 

target client. By applying this strategy for each target client, the scalability of the session largely 

increases, being limited to the number of clients that are supported within the configured FoV 

at any moment. 

 

Figure 6. High-level schemes of sessions with clients connecting to two different SFUs. 

 

Figure 7. Position- and FoV-aware delivery module of the SFU. 

4.1.2 Final hardware 

The SFU has been tested and run in a variety of Personal Computers (PCs) and Servers (both running 
Windows or Ubuntu), with no specific hardware requirements. Conservative specifications for a server 
hosting both the SFU and Holo Orchestrator could be: 4 virtual Central Processing Units (vCPU), 8 GB 
RAM, 20 GB storage. It has also been successfully deployed on a server on the Microsoft Azure cloud 
computing platform with Standard DS1 v2 specs (1 vCPU, 3.5 GB RAM). 

N Clients M Clients

… …Edge
(SFU)

Edge 
(SFU)



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 25 of 82 © 2023-2025 6G-XR Consortium 

4.1.3 Final software 

The SFU requires the installation of Node.js and socket.io, and it has been successfully installed and 
run in Windows 10 and Ubuntu 22.04 LTS machines, including Virtual Machines (VMs) on Azure. It has 
also been virtualised as a Docker container and a Helm chart, which eases its deployment on any 
machine, including those provided by hyper-scalers. 

4.1.4 Evolution compared to the previous release 

Table 3 lists and summarizes the features and capabilities of the SFU, comparing the final released 
version to the first released one, reported in D3.1 [2].  

Table 3. Comparison of the first and final releases of the SFU. 

Feature First release Final release 

Virtualisation Docker Helm Chart 

Architecture / 

Modularisation 

SFU Selection 

Different managers for 

media and events data 

Support for multi-SFU architectures 

Scalability Limited to the scalability 

limits of a single SFU 

(bandwidth is the most 

limiting factor)  

(~8 users/session) 

SFU selection in the most appropriate Edge / 

Network (latency reduction >100ms) 

Support for multi-SFU architectures, with 

load balancing (~15 users/session) 

Position and viewport-aware delivery (>20 

users/session) 

4.2 MULTIPOINT CONTROL UNIT 

4.2.1 Description of the component 

In traditional video conferencing services, MCUs are typically used to lower the computation and 

bandwidth requirements at the client side by performing stream multiplexing, transcoding, and 

composition functions on the cloud [5]. 

6G-XR has departed from a pioneer and fully functional Point Cloud MCU (outcome of the EU H2020 

VR-Together project4) to enable more lightweight and scalable multi-user holographic communication 

services [5]. In particular, the MCU acts as a UP AF that receives all volumetric video (i.e., Point Cloud) 

streams from a given session, multiplexes and fuses them, and then performs smart transcoding 

features to provide a single personalised output Point Cloud stream to each involved user in the 

 
4 https://vrtogether.eu/ 

https://vrtogether.eu/


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 26 of 82 © 2023-2025 6G-XR Consortium 

session. That allows reducing the bandwidth and processing requirements on the client side and thus 

contributes to higher scalability and interoperability [5].  

A high-level architecture of the MCU is provided in Figure 8, which includes the main components and 

modules of the MCU and the interactions among them. A legend below the architecture diagram has 

been added to facilitate the meaning of each block. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 27 of 82 © 2023-2025 6G-XR Consortium 

 

Figure 8. MCU architecture. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 28 of 82 © 2023-2025 6G-XR Consortium 

The architecture of the MCU is structured into five main blocks, briefly explained as follows (further 

details can be found in [5]). 

1. Block 1 - Reception and Decoding  

The first block of the diagram is dedicated to the reception and decoding components. The very first 

component, called Packet Receiver, is in charge of establishing communications with the Holo 

Orchestrator. Once the MCU is added to the session, a Packet Receiver component, which is in charge 

of registering the actual participants of the holoportation session, keeps listening until one or more 

participants join. For each client (or participant), the MCU instantiates a logic entity within a 

component called Player Containers. Each logic entity (indicated as Container User 1, 2, …, N) is used 

to store, for each user, the information needed by the MCU to perform its optimisations, such as user 

position and frustum (visible area coordinates). The Player Containers provides an output to Block 3 

(explained afterwards in this section), every time a change of scene is detected (change of position or 

visible area). The last component of Block 1 is the Decoders Bank, which is in charge of decoding the 

incoming volumetric video frames, and it is designed following a producer/consumer multithreading 

scheme, allocating one CPU thread to every decoder. Every time a new input frame is received, the 

first available thread is allocated to perform the corresponding decoding process. The decoded 

volumetric frames are then available as colour components and geometry information. 

2. Block 2 - Volumetric Data Storage and Transformation  

The MCU receives volumetric data from all the holoportation participants, each of them with different 

local coordinate references. After the decoding of the streams, a transformation is needed. The 

Volumetric Data Transformer, in charge of performing the transformations of the volumes in world 

coordinates, includes a Compute Unified Device Architecture5 (CUDA) based implementation that 

performs the coordinates conversion to the global coordinate system and, at the same time, evaluates 

the corresponding bounding box. The output is then stored in a RAM-based component, called 

Volumetric Data Container, which is in charge of holding the transformed geometry data. FInally, the 

remaining MCU components are able to request the information stored here for the optimisation of 

the streams. 

3. Block 3 - Field of View (FoV) Manager & Volumetric Data Collector  

To optimise the volumetric video streams delivered to each participant, the MCU needs to be aware 

of which participants are seen by each of the other participants, and in which positions they are. For 

this reason, the FoV Manager is in charge of processing the frustum and position of the participant 

users, previously stored in the Player Containers (Block 1) and creating a list of participants that each 

client is seeing. The list is updated every time a scene change is detected in Block 1 and the final output 

is provided to the rest of the pipeline (List of seen Participants 1, 2, …, N). For each participant, the 

system creates a component called Volumetric Data Collector that receives the recently created Lists 

of Participants. The Volumetric Data Collector knows: (i) the participants seen by each client needed 

to avoid streaming redundant data, and (ii) the relative positions of the users, coming from Block 1. 

 
5 https://developer.nvidia.com/cuda-toolkit 

https://developer.nvidia.com/cuda-toolkit


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 29 of 82 © 2023-2025 6G-XR Consortium 

The participants not seen are then removed from the data to be provided, while the resolution 

optimisation, based on the relative distances, is performed in Block 4. 

4. Block 4 - Level of Detail (LoD) Optimisation  

Once the MCU is aware of which participants are seen by each participant, the resulting volumetric 

video has to be transmitted with a resolution that depends on the relative distance and positions 

between them. In 3D video, the usual nomenclature for the resolution is LoD. Block 4 is in charge of 

requesting the volumetric video, stored in the Volumetric Data Container (Block 2) with the highest 

LoD available, and subsampling the number of voxels depending on the distances between users. The 

goal is to reduce the amount of data to be delivered if the distance does not allow the user to 

appreciate the maximum resolution available. To know if the LoD needs to be reduced, Block 4 receives 

the LoD requested by the Volumetric Data Collectors (Block 3). If the LoD requested is the maximum 

allowed, the MCU avoids performing redundant operations and delivers the Volumetric Video as 

previously received. On the other hand, if the LoD requested is lower than the maximum, the process 

called LoD manager is activated and performs a CUDA-based operation for the reduction of the LoD. 

The resulting output is then the downsampled Volumetric Data. 

 

5. Block 5 - Fusion, Encoding and Transmission  

Block 5 is in charge of performing the Fusion previously described and of creating the scene to be 

delivered to each participant, thanks to the inputs created by the previous blocks. The first component 

involved is the Fusion Cache. The Fusion Cache receives the data related to the fused scene 

composition from the Volumetric Data Collectors (Block 3) and, when a set of volumetric videos has to 

be delivered, a process is activated to check if such a scene has been previously created and stored. If 

the requested scene is not available in the Fusion Cache, the system performs the following steps: 

1. Request the needed Volumetric Data, after the LoD optimisation, from Block 4. 

2. Perform a fusion of the Volumetric Data from different participants. 

3. Provide the fused Volumetric Data to the Bank of Encoders, which assigns an encoding thread 

for each user. 

4. Transmit the corresponding encoded data to the clients. 

In addition, the MCU includes a smart system to avoid performing redundant operations. After the 

steps described above, the compressed fusion is indeed stored in the Fusion Cache for future use. 

Within Block 5, the system is indeed capable of analysing if a newly requested fusion was previously 

performed for another user. This may often happen given that several users, placed close to each 

other, may be observing the same area. In this case, the set of steps related to fusion and encoding is 

skipped, and the previously created fusion is directly delivered. 

The next key innovations have been applied to that MCU component in 6G-XR, mostly in its first period 
(and thus already reported in D3.1 [2]) 

• It has migrated to Linux to allow for its virtualisation (VNF) and dynamic orchestration (WP2).  

• The mixing/fusion and transcoding features of the MCU have been decoupled, so they can be 
used independently or jointly for each instance of the MCU. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 30 of 82 © 2023-2025 6G-XR Consortium 

• New interfaces between the MCU, the Holo Orchestrator and SFU components have been 
developed to enable the coexistence of multiple parallel MCUs per session, and even of the 
MCU with the newly developed SFU.  

4.2.2 Final hardware 

The MCU has been successfully deployed and tested in two server machines with the following 
specifications: 

• Processor: 2 x Intel (R) Xeon (R) Gold 5218R (2.1 GHz), 40C/80T; Memory: 115 GB RAM; GPU 
NVIDIA Tesla T4 16GB. 

• Processor: AMD Ryzen Threadripper 3970X (3.70Ghz), 32C; Memory: 16 GB; GPU: NVIDIA 
GeForce RTX 3060Ti. 

4.2.3 Final software 

The MCU has been developed in C++. The initial version was developed and run on Windows and later 
migrated to Linux in the 6G-XR project, mainly due to the better support for software virtualisation 
(containerisation). 

4.2.4 Evolution compared to the previous release 

The evolution of the MCU compared to its departing version was mostly performed in the first period 
of 6G-XR and thus reported in D3.1 [2]. In the second period, the efforts were focused on improving 
the scalability of the SFU component (see Section 4.1), due to the promising performance obtained in 
the first explorative tests. 

4.3 REMOTE RENDERER 

4.3.1 Description of the component 

The Remote Renderer developed by the 6G-XR project is meant to enable the consumption of VR 
experiences for devices with limited local processing capabilities. Deployed as a VNF within the edge 
infrastructure, the Remote Renderer leverages VR content rendering technologies and network 
virtualisation to generate two different types of media streams: 

• Personalised media stream: employed for interactive VR users, featuring a media session 
based on the WebRTC protocol. The remote renderer renders volumetric video content into a 
VR scene and then produces a 360° mono or stereo video stream based on a selected 
viewpoint, which can be personalised using the 6DoF information obtained from the user's 
device. As a consequence of the above, each media stream is transferred in real-time and 
consumed by only one user. 

• Non-customised media stream: employed for passive VR consumption, featuring a media 
session based on the DASH protocol. The remote renderer renders volumetric video content 
into a VR scene and then produces a 2D, 360° mono or stereo video stream. In this case, the 
6DoF information is not received from the user's device, as the viewpoint is fixed during the 
media session. As a consequence of the above, the media stream is unique for all users and is 
transferred through the standard HTTP protocol. 

The internal components of the Remote Renderer, shown in Figure 9, are the following: 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 31 of 82 © 2023-2025 6G-XR Consortium 

• Surrogate Player: it functions similarly to a native video player by receiving and decoding 
various inputs from orchestration, switching, and mixing units. These inputs include 
configuration messages, events, and data sources such as Point Cloud data, as well as 2D and 
360° video and audio streams. However, unlike a typical player, it avoids displaying these 
inputs directly. 

• Rendering Engine: responsible for rendering the data sources received by the Surrogate Player 
into a 2D or 360° video stream with accompanying audio. It achieves this by inserting a virtual 
camera and a virtual microphone within the VR scene. Critically, this module utilises the 6DoF 
information received from the user's device to adjust the position and orientation of the virtual 
camera, thereby personalising the generated video stream according to the user's viewpoint 
within the VR scene. 

• Streaming Server: it performs two key functions. First, it encodes the 2D or 360° video stream 
generated by the Rendering Engine and transmits it to the user's video player using the most 
appropriate streaming protocol. Second, it acts as a receiving endpoint for the 6DoF 
information generated by the user's video player and sends this data to the Rendering Engine 
for viewpoint adjustments. 

Two different video players are employed depending on the type of media stream (personalised 
stream with WebRTC or non-customised with DASH). The connection of the video players to the 
Remote Renderer and the entire workflows for both WebRTC and DASH are explained in Sections 5.2 
and 5.3. 

 

Figure 9. Logical modules of the Remote Renderer and Video Player. 

4.3.2 Final hardware 

For the final version of the Remote Renderer, two different setups are employed to deploy and test its 
functionalities. The first one consists of a VM with a Kubernetes installation, the second one of a 
physical machine with bare-metal Kubernetes. Table 4 shows the characteristics of both. In both cases, 
the GPU is employed in passthrough mode and not shared with any other VM or container. These 
configurations have allowed the generation of 360° Stereo video stream up to 4K at 60 FPS. 

Table 4. Hardware employed to deploy and test the Remote Renderer. 

Hardware VM specifications with 
Kubernetes 

Bare-metal Kubernetes specifications 

CPU Intel Xeon 12 Cores (2.1 GHz) AMD Ryzen Threadripper 3970X 32 Cores 
(3.70GHz) 

RAM 32GB 16GB 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 32 of 82 © 2023-2025 6G-XR Consortium 

GPU NVIDIA Quadro RTX 4000 NVIDIA RTX 3060 Ti 

4.3.3 Final software 

The final implementation of the Remote Renderer includes all three logical modules, while the 

Surrogate Player was still missing in the previous release. The implementation of the Surrogate Player 

is based on HoloMIT SDK v3.2.0 and allows to revive real-time volumetric video and audio from other 

components, such as SFU (Section 4.1) and/or MCU (Section 4.2). 

The final solution is mostly based on C++ and C# programming languages and works in the Ubuntu 

22.04 Operating System (OS) LTS environment. It has Unity and GStreamer frameworks as main 

development dependencies. Some GStreamer libraries have also been modified to make the DASH 

implementation compliant with DASH Industry Forum (DASH IF) recommendations6. These 

modifications have been submitted as three separate merge requests to the official repository7,8,9. The 

complete list of the Remote Renderer dependencies is shown in Table 5. 

Table 5. Software dependencies of the Remote Renderer and their versions. 

Software and frameworks Version 

Unity 2022.3.50f1 

Unity Render Streaming 3.1.0-exp.7 

HoloMIT SDK V3.2.0 

Vulkan 1.3.204 

GStreamer (modified, merge requests 
submitted to official repository) 

1.24 

Nvidia driver 535.161.07 

Nvidia Cuda Toolkit 12.2 

Figure 10 and Figure 11 show the final Remote Renderer running as a standalone application. In the 

virtual room, 3D objects in point cloud format can be rendered (Figure 10), while virtual cameras and 

microphones are instantiated to capture the audio and video to be sent to the video player. Moreover, 

interactive users through WebRTC are shown through an avatar in the scene (Figure 11), while passive 

users through DASH are not visualised. 

 
6 https://dashif.org/ 

7 https://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests/7886 

8 https://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests/8168 

9 https://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests/8608 

https://unity.com/es
https://docs.unity3d.com/Packages/com.unity.renderstreaming@3.1/manual/index.html
https://www.nvidia.com/Download/index.aspx
https://www.nvidia.com/Download/index.aspx
https://www.nvidia.com/Download/index.aspx
https://developer.nvidia.com/cuda-toolkit
https://dashif.org/
https://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests/7886
https://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests/8168
https://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests/8608


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 33 of 82 © 2023-2025 6G-XR Consortium 

 

Figure 10. Remote Renderer running as a standalone application with a synthetic point cloud in the VR scene. 

 

 

Figure 11. Remote Rendering running as a standalone application with a 3D Avatar in the VR scene. 

Finally, the Remote Renderer can also work without a Graphical User Interface (GUI), i.e., by enabling 

the headless mode of the Unity-based application. This allows to have a containerised version running 

with the software environment presented in Table 6. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 34 of 82 © 2023-2025 6G-XR Consortium 

Table 6. Environment for the deployment of the containerisation Remote Renderer. 

Software Version 

Ubuntu OS 22.04 

Docker 27.5.1 

Docker Compose 2.32.4 

Kubernetes 1.32.1 
Nvidia Container Toolkit 1.15.0 

NVIDIA GPU Operator 24.9.2 

Thanks to the containerisation, the Remote Renderer has its Dockerfile for building purposes and Helm 
Chart for deployment on a Kubernetes cluster. 

4.3.4 Evolution compared to the previous release 

The major change compared to the previous release consists of adding the Surrogate Player module. 
This module is crucial for the interconnection with other XR Enablers, such as the SFU (Section 4.1) and 
the Holo Orchestrator (Section 7.1). Furthermore, several features of the modules Rendering Engine 
and Streaming Server were improved.  All the improvements and changes over the previous version of 
the Remote Renderer are described in Table 7. 

Table 7. Comparison of the first and final releases of the Remote Renderer. 

Feature First release Final release 

Inputs Pre-recorded and locally stored 

audio and video files (2D video or 

volumetric video/Point Cloud) 

Real-time volumetric video and 

audio received through the 

Surrogate Player 

Rendering 2D Mono or 360° Mono 2D Mono, 360° Mono or 360° 

Stereo 

Interaction WebRTC: translation and rotation 

through data-channel 

DASH: no interaction 

WebRTC: translation through data-

channel and rotation performed 

locally in the UE using 360° video 

DASH: rotation performed locally 

in the UE using 360° video 

Output codecs 

and protocols 
WebRTC: VP8, H.264 and OPUS 

DASH: H.264 and AAC 

WebRTC: VP8, H.264 and OPUS 

DASH: H.264 and AAC 

RTP over QUIC (RoQ): H.264 

Media over QUIC (MoQ): H.264 

Streaming 

adaptation 
Not available Rate Control REST API for WebRTC 

and DASH 

https://ubuntu.com/
https://ubuntu.com/
https://www.docker.com/
https://docs.docker.com/compose/
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/index.html
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/index.html


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 35 of 82 © 2023-2025 6G-XR Consortium 

DASH IF 

compliance 
Not compliant Compliant. Three merge requests 

submitted to the official 

GStreamer repository 

Containerisation Dockerfile and Helm Chart with no 

configurable parameters 

Dockerfile configurable through 

JSON and Helm Chart through 

ConfigMaps 

Communications 

with Holo 

Orchestrator 

and SFU 

No Session management with Holo 

Orchestrator and multimedia 

communications with SFU (audio 

and video volumetric video) 

 

 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 36 of 82 © 2023-2025 6G-XR Consortium 

5 ADAPTIVE LOW-LATENCY XR DELIVERY 

This section presents the final versions of the XR Enablers developed to provide access to VR 
experiences from heterogeneous devices, leveraging adaptive and low-latency multimedia delivery 
protocols. The different components are described in the following subsections, together with their 
respective requirements, as well as the corresponding initial software and hardware employed for the 
development. 

5.1 NATIVE PLAYER 

5.1.1 Description of the component 

The endpoint for the clients of XR services consists of a native Unity-based player (Windows build), 

which implements: 

• The necessary session and resource management features interfacing the Holo Orchestrator.  

• The processing and exchange of audio and volumetric video streams for real-time 
communications. 

• A set of multimodal content presentation features. 

• A set of interaction features, with the VR environment, and with other remote users. 

6G-XR has departed from a fully functional version of this Unity-based player (outcome of the EU 

H2020 VR-Together project10), whose features are provided as a Unity package and associated 

Software Development Kit (SDK). 

The implementation details for the departing native player components and modules can be found in 

[3], while the components deployed in the first 6G-XR period are detailed in D3.1 [2]. 

In the second 6G-XR period, the native player has been extended and evolved by: 

• Supporting sessions in which a native player can receive data from multiple SFUs (more details 
in Sections 4 and 7). 

• Integrating the latest version of the volumetric video capture sub-system (more details in 
Section 3), supporting both the sensors by Raytrix and modern affordable RGB-D sensors, like 
Orbbec Femto Bolt11. 

• Enabling dynamic adjustment of the data rate by modifying the volumetric video resolution or 
the encoding parameters. 

• Integrating new interfaces with the Holo Orchestrator with the goal of: 

o Receiving dynamic endpoints of the SFU to connect to. 

 
10 https://vrtogether.eu/ 

11 https://www.orbbec.com/products/tof-camera/femto-bolt/  

https://vrtogether.eu/
https://www.orbbec.com/products/tof-camera/femto-bolt/


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 37 of 82 © 2023-2025 6G-XR Consortium 

o Receiving alerts from the Holo Orchestrator, indicating the need for adjusting the data 
rate. 

• Finalising the migration to Linux, for integration with the Remote Renderer (Section 4.3). 

In addition, a new web-based headless client, developed using Node.js and Socket.IO, has been 

developed to ease testing. This headless client handles pre-recorded holograms, streams them to 

remote clients, and receives the holograms from the other involved native/web clients in a shared 

session, but without the need for media capture/rendering or encoding/decoding. 

5.1.2 Final hardware 

The Unity-based player, integrating the SDK for holographic communications, needs to run on a 
desktop PC or laptop with GPU capabilities (NVIDIA RTX onwards). That PC then connects via cable to 
a VR headset for media presentation. Different VR headsets have been successfully tested, including 
Oculus Rift, Oculus Quest 1/2/3, Oculus PRO, and HTC VIVE. It also supports the connection with 
volumetric video capture sub-systems with diverse RGB-D sensors (Azure Kinect, Intel Real Sense, 
Orbbec Femto Bolt) and light field sensors (Raytrix), including single-sensor and multi-sensor setups. 

5.1.3 Final software 

The Unity-based player, integrating the SDK for holographic communications, needs to run on a 
Windows 10 or 11 VR-ready device, and has been tested with a variety of Unity12 versions, starting 
from 2020.3 and including more recent 2022.3.X releases, with a key requirement of having at least 
one of the Scriptable Render Pipelines and the new Input System active and enabled.  
 
The Linux version has been tested with Ubuntu 22.04 and 24.04. 
 

5.1.4 Evolution compared to the previous release 

Table 8 lists and summarizes the features and capabilities of the Native Player, comparing the final 
released version to the first released one, reported in D3.1 [2].  

Table 8. Comparison of the first and final releases of the Native Player. 

Feature First release Final release 

Volumetric 

Capture 

Subsystem 

Integrated 

Azure Kinect sensors Azure Kinect sensors 

Raytrix sensors (Section 3) 

Orbbec Femto Bolt 

Holographic 

Transmission 

Support only holograms 

captured in real-time 

Support both holograms captured in real-time 

and pre-recorded holograms  

Data Rate Fixed Adaptive, based on instructions received from 

the Holo Orchestrator 

 
12 https://unity.com/ 

https://unity.com/


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 38 of 82 © 2023-2025 6G-XR Consortium 

SFU 

connection 

Pre-established at the 

start of the session, and 

with a single SFU 

Dynamic configuration during the session 

lifetime, supporting connection to multiple 

SFUs. 

Operating 

System 

support 

Windows and partial 

Linux implementation 

Windows and Linux implementation 

5.2 WEBRTC STREAMING TO WEB PLAYER  

5.2.1 Description of the component 

This section details the web-based Video Player and Signalling Server designed for WebRTC streaming, 
which operates in conjunction with the Remote Renderer described in Section 4.3 (more specifically, 
the “Streaming Server” module). Figure 12 illustrates how these two elements are integrated with the 
Remote Renderer: 

• The WebRTC Video Player is responsible for receiving and displaying on the screen the content 
that has been previously encoded and streamed by the Remote Renderer. Additionally, it 
provides interactive functionality through the WebRTC data-channel.  

• The Signalling Server facilitates the negotiation of multimedia and network parameters before 
initiating the multimedia communication between the Remote Renderer and the player. 

 

Figure 12. Components of the WebRTC streaming enabler. 

The diagram presented in Figure 13 illustrates the operational workflow of the WebRTC-based 
multimedia streaming designed for real-time remote rendering. The process begins when a user aims 
to join a remote rendering session via the WebRTC Video Player. He sends a request to join a session 
and activate the Remote Renderer. This request is handled by the Holo Orchestrator (Section 7.1), 
which responds by deploying the Remote Renderer and configuring the session parameters. Once the 
renderer is initialised, it publishes the stream through the Signalling Server. The WebRTC Player 
subscribes to this stream using the provided Signalling Server endpoint, thereby initiating the WebRTC 
negotiation phase. This phase comprises an exchange of SDP offers and answers through the Signalling 
Server, enabling both peers to agree on the media transmission parameters. The WebRTC Player sends 
an SDP offer, which the Remote Renderer answers with a corresponding SDP response. In addition, 
Interactive Connectivity Establishment (ICE) candidates are exchanged in both directions to determine 
the most effective communication path between the peers. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 39 of 82 © 2023-2025 6G-XR Consortium 

Once the peer-to-peer connection is established, the system enters a continuous rendering and 
streaming loop. During this loop, the Remote Renderer decodes incoming volumetric video and audio 
data from the SFU (Section 4.1) or MCU (Section 4.2), renders the scene based on the current 
viewpoint, and encodes the output stream for transmission. The rendered content, formatted as either 
360° Mono or Stereo video with associated audio, is streamed to the WebRTC Player. The player 
decodes this stream and visualises it for the user. 

Simultaneously, a dedicated interaction loop captures the 6DoF input from the user, encompassing 
both positional and rotational data. This information is transmitted back to the Remote Renderer, 
which utilises it to update the viewing perspective in real time. This interaction mechanism ensures 
that the rendered scene dynamically adapts to the user’s movement and orientation. 

In parallel with the rendering and interaction loops, the system maintains a monitoring and rate control 
feedback loop. The WebRTC Player collects performance metrics via the WebRTC standard getStats()13 
API, which are periodically transmitted to the Monitoring System. The Monitoring System aggregates 
this data and sends it to the Holo Orchestrator. Based on this feedback, the orchestrator instructs the 
Remote Renderer to dynamically adjust the video encoder settings through its Rate Control REST API. 

Overall, this workflow supports scalable, low-latency media delivery with adaptive viewpoint rendering 
and robust network adaptation. It enables remote rendering applications that demand both high-
quality rendering and seamless user interaction over constrained and variable networks. 

 
13 https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/getStats 

https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/getStats


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 40 of 82 © 2023-2025 6G-XR Consortium 

 

Figure 13. Communications for WebRTC streaming between the Remote Renderer and WebRTC Video player. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 41 of 82 © 2023-2025 6G-XR Consortium 

5.2.2 Final software 

Signalling Server: 

As it is a simple server only employed for negotiation among the two WebRTC peers (the Remote 
Renderer and the WebRTC Video Player), the final version of the Signalling Server did not receive any 
relevant updates compared to the previous one. It consists of a Node.js application developed using 
both JavaScript and TypeScript and incorporates a WebSocket library as a fundamental dependency to 
provide communications with the two WebRTC peers and enable the negotiation. 

The software dependencies of the Signalling Server and their versions are shown in Table 9. 

Table 9. Software versions used in the signalling server. 

Software and frameworks Version 

Node.js 21.2.0 

@types/ws (Node.js WebSocket library) 8.5.3 

 

WebRTC Video Player: 

The WebRTC Video Player is built using native WebRTC technologies. To enhance visualisation 

capabilities and support 360° Mono and Stereo video playback, the player integrates Three.js, an open-

source web framework for creating VR experiences on the web. It is compatible with any device that 

supports WebXR via a web browser. 

In addition to media playback, the WebRTC Video Player captures 6DoF inputs from various devices 

and sends them to the Remote Renderer to provide real-time interaction. Among input devices, the 

keyboard and mouse are employed when using a laptop, while motion sensors and joysticks are 

employed when wearing a VR headset. These inputs facilitate user interaction within the virtual 

environment and with other users. An illustration of the WebRTC Player is provided in Figure 14 

(remote renderer VR scene and live volumetric holoportation) and Figure 15 (VR simulator mode). 

 

Figure 14. WebRTC Video player in laptop browser. (Left) VR Scene. (Right) Live volumetric holoportation. 

 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 42 of 82 © 2023-2025 6G-XR Consortium 

 

Figure 15. WebRTC Video player in laptop browser with VR simulator. 

The development used mainly the JavaScript programming language, while the deployment is 

performed through Node.js14 Three.js15. The software dependencies and their versions are shown in 

Table 10. 

Table 10. Software versions used in the WebRTC Player. 

Frameworks Version 

Node.js 21.2.0 

Three.js R127 

Finally, both the Signalling Server and WebRTC Video Player have been containerised through Docker 
and described through a Helm Chart. 

5.2.3 Final hardware 

In terms of hardware for running the Signalling Server and the WebRTC Video Player, it is important to 
mention that they are hardware-agnostic. Since they are based on Web technologies, they do not rely 
on any specific hardware components and can be deployed as containerised Node.js applications 
across a variety of platforms. 

For the final deployment, the Signalling Server and the WebRTC Video Player are deployed as 
containerised applications on Kubernetes through their Helm Charts. To test the WebRTC Video Player, 

 
14 https://nodejs.org/en 

15 https://threejs.org/ 

https://nodejs.org/en
https://threejs.org/


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 43 of 82 © 2023-2025 6G-XR Consortium 

the Chrome web browser on standard laptops and the built-in Browser on the Meta Quest 216 and 
Meta Quest 317 VR headsets are employed. 

5.2.4 Evolution compared to the previous release 

While the Signalling Server remains almost the same as the one developed in the first release, some 
further developments have been executed on the WebRTC Video Player. These changes are presented 
in Table 11. 

Table 11. Comparison of the first and final releases of the WebRTC streaming enabler. 

Feature First release Final release 

Video 

Player - 

Video 

format 

2D Stereo, where each video 

stream is sent over a separate 

WebRTC media channel 

360° Mono and Stereo, where each video 

stream is sent over a unique WebRTC 

media channel 

Video 

Player - 

Interaction 

Translation and rotation 

information sent over WebRTC 

data-channel 

Translation information is sent over the 

WebRTC data-channel, while rotation is 

performed locally 

5.3 DASH STREAMING TO WEB PLAYER 

5.3.1 Description of the component 

This section presents the web-based DASH Video Player and HTTP server designed for DASH streaming, 
which operates in conjunction with the Remote Renderer described in Section 4.3. The purpose of the 
HTTP Server is to host the DASH Media Presentation Description (MPD) file and its associated audio 
and video segments, which are generated by the Remote Renderer and server to the Video Player 
through the HTTP protocol. 

While DASH introduces higher latency compared to WebRTC (see Section 5.2), it remains a suitable 
alternative in scenarios where real-time interaction with the VR environment is not necessary and 
higher latency can be tolerated. Instead, DASH is ideally suited for passive media consumption, where 
users experience the VR scene from a fixed viewpoint and do not engage in interactive behaviours. As 
a widely adopted solution for scalable multimedia delivery, DASH leverages the HTTP protocol to 
enable robust scalability in terms of connected users. 

Figure 16 illustrates how the DASH Video Player and HTTP Server are integrated with the Remote 
Renderer: 

• The HTTP Server facilitates the hosting of the MPD and the multimedia segments, including 
audio and video, that are generated by the Remote Renderer. 

 
16 https://www.meta.com/es/en/quest/products/quest-2/ 

17 https://www.meta.com/es/en/quest/quest-3/ 

https://www.meta.com/es/en/quest/products/quest-2/


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 44 of 82 © 2023-2025 6G-XR Consortium 

• The DASH Video Player is responsible for requesting the MPD from the HTTP Server and 
parsing it. Then, it starts downloading the multimedia segments, decoding them and 
displaying them on the device screen. 

 

Figure 16. Components of the DASH streaming enabler. 

This diagram in Figure 17 illustrates the operational workflow of a DASH–based communication for 
remote rendering volumetric content, emphasising a passive user’s session with fixed viewpoint and 
adaptive rate control. In the starting phase, the Holo Orchestrator has pre-deployed the Remote 
Renderer, providing it with the necessary configuration to connect to the SFU (Section 4.1) or MCU 
(Section 4.2) to retrieve the volumetric video and audio. 

When the DASH Video Player requests to initiate a session for passive media consumption, the Holo 
Orchestrator responds by providing the HTTP Server endpoint. Then, the core rendering and streaming 
process operates in a continuous loop. Initially, the Remote Renderer decodes incoming volumetric 
video and audio streams. The rendering of these streams within the VR scene is performed from a fixed 
viewpoint to generate a video output in 2D Mono, 360° Mono or 360° Stereo format with associated 
audio. Then, the video is scaled at different resolutions (representations), being encoded in parallel 
and generating DASH media segments. The resulting segments, along with the associated DASH MPD, 
are written to disk and made available via the HTTP server. The DASH Video Player retrieves the MPD 
and segments from the HTTP server and begins decoding and visualising the content. 

Parallel to this media delivery workflow, the system includes a monitoring loop. The DASH Player 
periodically collects playback and streaming performance metrics, which are transmitted to the 
Monitoring System. The Monitoring System aggregates this data and feeds it back to the Holo 
Orchestrator. Based on this feedback, the Holo Orchestrator acts on the Rate Control REST API of the 
Remote Render to adjust the MPD to show only the desired representations. This closed feedback loop 
allows the system to respond dynamically to varying network conditions, ensuring smooth video 
delivery and maintaining a balance between quality and reliability. 

In summary, this workflow offers a scalable and robust framework for passive volumetric content 
streaming using the DASH protocol. It is particularly well-suited for UCs where interaction is not 
required but where high-quality and scalable video transmission is essential. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 45 of 82 © 2023-2025 6G-XR Consortium 

 

Figure 17. Communications for DASH streaming between the Remote Renderer and WebRTC Video player. 

5.3.2 Final software 

HTTP Server: 

The HTTP Server employs the same technologies as the previous release. It consists of a Node.js 

application using the default HTTP Server library to serve MPD and segment files. As an improvement, 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 46 of 82 © 2023-2025 6G-XR Consortium 

a UTC timing information compliant with the DASH IF recommendation18 is also served to both the 

Remote Renderer and the DASH Video Player. This information is necessary to provide a better 

synchronisation at the multimedia application level between the multimedia provider and consumer. 

All the final software dependencies and their versions are shown in Table 12. 

Table 12. Software versions used in the HTTP Server. 

Software and frameworks Version 

Node.JS 12.22.9 
HTTP-Server 14.1.1 

 

DASH Video Player: 

As mentioned in Section 4.3.3, the improvements on the GStreamer framework make it compliant with 
DASH IF recommendations. For such a reason, the final player is no longer based on the Shaka Player, 
but it employs the Dash.js player as it is the reference player provided by DASH IF. Like the previous 
release, this new player is also deployed through Node.js. All the software dependencies of the player 
and their versions are shown in Table 13. 

Table 13. Software versions used in DASH Player. 

Software and frameworks Version 

NodeJS 16 
Dash.JS 5.0.0 

Figure 18 shows a demonstration of the final implementation of the DASH Video Player. 

 
18 https://dashif.org/dash.js/pages/usage/clock-sync.html 

https://nodejs.org/en
https://dashif.org/dash.js/pages/usage/clock-sync.html


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 47 of 82 © 2023-2025 6G-XR Consortium 

 

Figure 18. DASH Player based on Dash.js. 

Finally, both the HTTP Server and DASH Video Player have been containerised through Docker and 
described through a Helm Chart. 

5.3.3 Final hardware 

Both the HTTP Server and the DASH Video Player are hardware-agnostic, meaning they do not depend 
on any specific hardware configuration. They can be deployed as containerised Node.js applications 
across a wide range of platforms. 

It is worth noting that the HTTP Server is responsible for delivering the media content generated by 
the Remote Renderer, as described in Section 4.3. To streamline deployment in this final release, the 
HTTP Server has been containerised with the Remote Renderer in a unique Docker container and 
deployed through a Helm Chart on Kubernetes. 

The DASH Video Player is instead provided with a separate Dockerfile for building and its own Helm 
Chart for deployment. It has finally been tested using the Chrome web browser on a standard laptop 
and the Browser on the Meta Quest 2 and PICO 419 VR headsets. 

5.3.4 Evolution compared to the previous release 

Table 14 presents the improvements implemented in the final release of the HTTP Server and DASH 
Video Player, comparing them with their first release. 

Table 14. Comparison of the first and final releases of the DASH streaming enabler. 

Feature First release Final release 

 
19 https://www.picoxr.com/es/products/pico4e 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 48 of 82 © 2023-2025 6G-XR Consortium 

HTTP Server – 

UTC 

synchronisation 

Not available It serves UTC timing information to the 

Remote Renderer and DASH Video Player 

for synchronisation purposes 

DASH Video 

Player - 

Framework 

Shaka-player Dash.js player for better compliance with 

DASH IF recommendations 

DASH Video 

Player – UTC 

synchronisation 

Not available It receives the UTC timing information 

from the HTTP Server 

 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 49 of 82 © 2023-2025 6G-XR Consortium 

6 MULTI-MODAL SYNCHRONISATION 

In the 6G-XR project, device and media synchronisation play a key role, as the project deals with real-
time streaming and communications involving various sensors, streams, media modalities, and 
distributed users. This section examines the achievements in clock and media synchronisation 
mechanisms implemented in 6G-XR to support XR Enablers that operate under time constraints or 
require time-aware processing. 

6.1 CLOCK SYNCHRONISATION 

In the 6G-XR project, synchronisation between VNFs, serving as XR Enablers within the computing 

infrastructure, and end-user applications, operating on UE, constitutes a fundamental requirement for 

the precise execution of time-sensitive and delay-critical multimedia transmission and interactive XR 

operations. To meet this requirement, the 6G-XR project adopts two distinct synchronisation 

mechanisms aimed at enhancing the overall synchronisation performance of the deployed XR 

Enablers: Clock synchronisation, described in this section, and Media synchronisation, addressed in 

Section 6.2. 

Clock synchronisation is required for synchronising the device or host where the XR Enablers are 
deployed and running. To achieve it, the 6G-XR project employed Network Time Protocol (NTP), as it 
has an ease to use client-server communication architecture that simplifies the synchronisation of both 
the VM at the Edge locations, where XR Enablers such as SFU, MCU and Remote Renderer are 
deployed, and the UEs, where the Native Web Players are instead executed. Furthermore, the clock 
synchronisation enables the accurate tracking of measurements that are performed thanks to the 
monitoring system described in Section 9.1. To ease access to an absolute clock source, like NTP or an 
alternative one, the Holo Orchestrator also includes the Clock Manager (Section 7.1), which can serve 
as a clock reference distributor module. Table 15 resumes the XR Enablers requiring clock 
synchronisation information and the operations performed with it. 

Table 15. Clock synchronisation within XR Enablers. 

XR Enabler Host or device Clock synchronisation 

Remote 

Renderer 

(Section 4.3) 

Unity-based 

containerised application 

running on the WP2 

Edge nodes 

The remote renderer uses the date/time 

provided by the Host OS to the Unity 

environment to apply timestamps to audio 

and video buffers 

Native Player 

(Section 5.1) 

Unity-based standalone 

application running on 

the UE 

The native player uses the date/time 

provided by the Host OS to the Unity 

environment to apply timestamps to audio 

and video buffers. Moreover, a metric 

exporter embedded in the native players 

employs the timestamp to relate the 

measurement to the exact time it is 

generated 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 50 of 82 © 2023-2025 6G-XR Consortium 

Web Players 

(WebRTC in 

Section 5.2 

and DASH in 

Section 5.3) 

Web applications 

running on the UE 

The clock information is necessary to 

measure the E2E delay of the media 

communications on the web player. 

Moreover, metric exporters embedded in the 

web players employ the timestamp to relate 

the measurement to the generated exact 

time 

Monitoring 

system 

(Section 9.1) 

Prometheus time series 

database running on a 

WP2 Edge node. 

It receives the information from metrics 

exporters and uses the clock information to 

store it in real time. Then, it supports both 

real-time monitoring and post-experiment 

analysis 

For all the XR Enablers operations, the usage of NTP is the best solution due to its lightweight design 

and requirements. Moreover, it is worth noticing that it is not necessary to have a more accurate 

synchronisation than NTP, as the degree of accuracy mostly depends on the video frames per second 

that are processed by the XR Enablers. For instance, even with a high frame rate of 60 frames per 

second, the minimum delay between video frames is approximately 16 ms (synchronisation in the 

order of tens of ms), which is an order of magnitude greater than the synchronisation error typically 

associated with NTP (synchronisation in the order of some ms). Thus, NTP sufficiently meets the timing 

requirements without introducing any practical limitations. 

Finally, the NTP Server employed for the XR Enablers synchronisation is provided by Edge/Cloud 
infrastructures of the 6G-XR project, like the Clock Manager integrated as part of the Holo-
Orchestrator. Thus, all the host and devices are connected to an absolute clock Server, like NTP, to 
retrieve the synchronisation information and update their internal clock accordingly. 

6.2 MEDIA SYNCHRONISATION 

Complementary to Clock synchronisation, Media synchronisation is employed to deal with time-
dependent operations at the application level, where the multimedia information is processed, as it 
allows the XR Enablers to be synchronised with a common time source. Thus, Media synchronisation 
represents an advanced step in achieving temporal alignment across XR Enablers. 

In the context of 6G-XR and its UCs, Media synchronisation is essential for the following operations: 

• Triggering or activating multimedia features of XR Enabler when needed: Some multimedia 

functionalities are time-dependent and rely on both clock and media synchronisation. For 

instance, a DASH player uses the current timestamp (clock timestamp) to determine which media 

segment should be downloaded at a given moment from the HTTP server (application timestamp). 

• Holographic communication operations: XR Enablers employed within holographic 

communications UCs include advanced operations with are highly sensitive to timing constraints. 

6DoF capture and interactions, for example, require real-time responsiveness, as any delay in user 

interaction can degrade the Quality of Experience (QoE) and may even lead to motion sickness. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 51 of 82 © 2023-2025 6G-XR Consortium 

• Estimating E2E delays: Accurate measurement of delays across different components in the E2E 

media pipeline requires precise synchronisation. This enables the correct generation of 

timestamps for every Media Unit (MU), such as video frames or audio samples. 

Ultimately, enabling the operations above ensures consistency in processing multiple media streams 
simultaneously, such as maintaining audio-video sync to avoid lip-sync issues, and supports a coherent 
XR experience. This is especially important in shared virtual environments, where actions in the 
physical world must be accurately reflected in the VR scene for one or more users entering or 
interacting in real time. Table 16 resumes the XR Enablers and their implemented mechanisms for 
media synchronisation. 

Table 16. Implementation of media synchronisation mechanisms within XR Enablers. 

XR Enablers Media synchronisation Implemented synchronisation mechanisms 

Video capture 

(Section 3.1) 

and Video 

reconstruction 

(Section 3.2) 

Inter-source 

synchronisation 

CoaXPress CXP-12 cables are employed to 

connect the multiple camera sensors setup 

and allow the 3D reconstruction module to 

run locally 

Wall-clock timestamps to capture frames 

from each sensor is inserted to allow for an 

in-sync volumetric reconstruction 

SFU (Section 

4.1) 

Intra-media and inter-

media synchronisation 

The SFU does not modify timestamps, and it 

waits until all the packets containing an MU 

are received to relay them. Thus, it preserves 

the original timing patterns of MUs for each 

of the incoming/outgoing streams 

An Event manager has been added to 

exchange time-dependent information 

among XR enablers, like Native players 

Native Player 

(Section 5.1) 

Inter-destination 

synchronisation 

Timing information is retrieved from the Clock 

Manager of the Holo Orchestrator 

No inter-destination synchronisation is 

handled to avoid adding delays and affecting 

the user’s experience 

Remote 

Renderer and 

WebRTC Web 

Player 

(Section 5.2) 

Intra-media and inter-

media synchronisation, 

inter-destination 

synchronisation 

Timestamps are inserted into each MU, based 

on the clock of the host, and preserved during 

media encoding and transmission 

Video and audio streams are synchronised 

with transport-level protocols (RTP/RTCP) 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 52 of 82 © 2023-2025 6G-XR Consortium 

when employing WebRTC such that they can 

be correctly played at the destination 

No inter-destination synchronisation is 

handled to avoid adding delays and affecting 

the user’s experience 

Remote 

Renderer 

(Section 4.3) 

and DASH 

Web Player 

(Section 5.3) 

Intra-media and inter-

media synchronisation, 

inter-destination 

synchronisation 

Timestamps are inserted into each MU, based 

on the clock of the host, and preserved during 

media encoding and transmission 

Video and audio streams are synchronised 

and multiplexed when employing DASH. 

Moreover, DASH MPD includes metadata 

related to timing information such as publish 

time and current time in UTC format 

A UTC Timing server has been implemented 

to provide a correct timestamp to the player 

such to timely request the media segments to 

be played at the destination. Additionally, this 

server also allows inter-destination 

synchronisation 

 

6.2.1 Final evaluation of media synchronisation 

In D3.1, the initial results of media synchronisation testing with the first versions of the XR Enablers 
were presented. These tests focus on measuring E2E video and audio latency, inter-destination 
asynchrony, and intra-media synchronisation using a QoS measurement method based on image and 
audio processing. The tests were conducted in a multi-user XR scenario delivered via WebRTC, 
employing a Remote Renderer, a WebRTC signalling server, and WebRTC players across different 
access networks, such as Ethernet, Wi-Fi, and the fifth Generation of cellular technology (5G) Stand 
Alone. The results indicated that Ethernet provided the lowest E2E latency and inter-destination 
asynchrony, while Wi-Fi 6 showed higher latencies and significant issues with synchronisation. For 
further details, refer to the deliverable D3.1 [2] or to the published papers with the complete analysis 
of the results [6]. 

In D3.2, further experiments are conducted to measure the delay from the time the image is generated 
until it is received by the user (E2E). These measurements are performed by means of WebRTC and 
DASH streaming solutions. Moreover, new streaming protocols based on QUIC are emerging as 
potential replacements for WebRTC and DASH and offer benefits like connection migration, stream 

multiplexing and multipath delivery. With the contribution of the REQUIEM project20 (awarded under 
Open Call 1 of the 6G-XR project), protocols such as QUIC and Media over QUIC (MoQ) are integrated 
and tested to provide a wider comparison of streaming protocols for holographic communications. 

 
20 https://netsoft.gsuite.tmit.bme.hu/projects/requiem 

https://netsoft.gsuite.tmit.bme.hu/projects/requiem


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 53 of 82 © 2023-2025 6G-XR Consortium 

In the experiment, multiple captures are performed to calculate the average latency and its deviation 
for each protocol. The tests employ the Remote Renderer described in Section 4.3, where the WebRTC 
solution integrates the Unity Render Streaming, while DASH, QUIC, and MoQ rely on GStreamer 
integration. All tests were performed over both 5G and Wi-Fi 6 networks to evaluate performance 
under different network conditions. The obtained results are shown in Table 17. 

Table 17. Latency with video stream at 1080P/60FPS/10MBPS 

WiFi 

Protocol Sender Receiver Latencyavg (ms) Latencydev (ms) 

WebRTC 

Remote Renderer 

(Section 4.3) 

WebRTC web player 

(Section 5.2) 82 12 

DASH 

Remote Renderer 

(Section 4.3) 

DASH web player 

(Section 5.3) 9399 13 

QUIC (RTP) 

Remote Renderer 

(Section 4.3) + OC1 

Requiem 

GStreamer pipeline 

from OC1 Requiem 248 2 

MoQ 

Remote Renderer 

(Section 4.3) + OC1 

Requiem 

MoQ player from 

OC1 Requiem 159 12 

5G 

Protocol Sender Receiver Latencyavg (ms) Latencydev (ms) 

WebRTC 

Remote Renderer 

(Section 4.3) 

WebRTC web player 

(Section 5.2) 129 11 

DASH 

Remote Renderer 

(Section 4.3) 

DASH web player 

(Section 5.3) 10227 14 

QUIC 

Remote Renderer 

(Section 4.3) + OC1 

Requiem 

GStreamer pipeline 

from OC1 Requiem 293 31 

MoQ 

Remote Renderer 

(Section 4.3) + OC1 

Requiem 

MoQ player from 

OC1 Requiem 194 20 

All protocols performed better over Wi-Fi than 5G, with improvements of up to 36% in the case of 
WebRTC. This protocol, natively implemented in Unity, shows the lowest latency overall, thanks to its 
optimised rendering and encoding pipeline. QUIC delivers promising results, with latency close to real-



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 54 of 82 © 2023-2025 6G-XR Consortium 

time performance, showing only a 77 ms difference over Wi-Fi and 65 ms over 5G when compared to 
URS WebRTC. MoQ also performed well, outperforming most protocols and ranking just below URS 
WebRTC in terms of latency. As expected, DASH shows the highest latency among all protocols, as it 
relies on HTTP/TCP and is not designed for real-time streaming applications, but rather for on-demand 
video consumption. 

A complete analysis of the obtained results is presented in two conference papers [7],[8]. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 55 of 82 © 2023-2025 6G-XR Consortium 

7 SESSION MANAGEMENT AND XR MEDIA ORCHESTRATION 

This section presents the XR Enablers in charge of session management and orchestration of the VR 
experience based on the network user plane, and the AR experience based on the network control 
plane. 

7.1 HOLO-ORCHESTRATOR 

7.1.1 Description of the component 

The Holo Orchestrator is an AF composed of different modules and services to allow the establishment, 

appropriate configuration, and lifecycle management of multi-user holographic communication 

sessions. Figure 19 provides an overview of the main modules and services of the Holo Orchestrator, 

which are briefly described next: 

• User Manager (UM): in charge of registering, managing and offering information/data from 

registered clients, scenarios and other in-cloud components, by using a MongoDB. By using the 

adopted holographic communication platform by i2CAT (HoloMIT21), users need to be logged in 

the platform before creating/joining a session and then must select a virtual scenario on which 

the session can be established (e.g., a virtual meeting room, a museum). In the first period, the 

UM handled semantic information about connected clients, like their nickname (as well as their 

user representation type and session name, in conjunction with the Session Manager (SM)). In the 

second period, API REST interfaces have been added to retrieve IP address (and port) for each 

connected client, so to provide this info to network entities for: (i) best Edge selection (e.g., based 

on available zones; (ii) enabling Access Traffic Steering-Switching-Splitting (ATSSS) features – from 

WP4 –for the XR service at the stream level. 

• Session Manager: in charge of managing the lifecycle of multi-user sessions (i.e., creating, joining, 

leaving and eliminating sessions) for each involved user/client and for each selected virtual 

scenario, by storing the associated information on a MongoDB. It is also in charge of interfacing 

the other services of the Orchestrator, like the Clock Manager (CM) and the Index/Connection 

Manager (ConM), to be able to select the most appropriate media function(s) - VNFs - to handle 

the communications for each session (i.e., SFU, MCU or Remote Renderer), the cloud or edge 

servers where to instantiate them, and then communicate this information to the involved clients. 

In the second period, the SM has been extended to support multi-SFU architecture and sessions 

from the Remote Rendering components. 

• Clock Manager: in charge of ensuring a coherent notion of time to all involved entities in the media 

session. It can act as a clock source against which to synchronize to, or it can provide a reference 

to an NTP server. The development of the CM was completed in the first period of the project and 

thus reported in D3.1 [2]. 

• Index/Connection Manager: in charge of interfacing the edge orchestration platform (developed 

in WP2) for selecting the most appropriate location where to deploy in-cloud VNFs for media 

processing and communication (i.e., SFUs, MCUs, Remote Renderers) and managing their lifecycle. 

This module has been extended in the second period of the project to implement the end-points 

 
21 https://i2cat.net/holoportation-technology/ 

https://i2cat.net/holoportation-technology/


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 56 of 82 © 2023-2025 6G-XR Consortium 

for two envisioned Network-as-a-Service (NaaS) APIs: (i) Network-assisted Rate Control (details in 

D4.3 [9]) to trigger rate adaptations or request Quality on Demand (QoD) to the network (details 

in D2.3 [10]); (ii) Edge-Cloud APIs (details in D2.3 [10]). It has also been extended to handle session 

and lifecycle management in sessions where multiple SFUs and Remote Renderers can intervene, 

and it also interfaces with the Metric Monitoring system (details in Section 9.1) to register alerts 

and receive notifications from it.  

 

Figure 19. High-level Overview of Holo Orchestrator modules and services. 

7.1.2 Final hardware 

The Holo Orchestrator has been tested and run on a variety of physical PCs and servers (both running 

Windows and Ubuntu OS), with no specific hardware requirements. It has also been successfully 

deployed on different Azure VMs, with the following specs: Standard DS1 v2 (1 vCPU, 3.5 GiB memory 

RAM); Standard DS2 v2 (2 vCPU, 7 GiB memory RAM); and Standard D4s v3 (4 vCPU, 16 GiB memory 

RAM. 

7.1.3 Final software 

The Holo Orchestrator requires the installation of Node.js22 and socket.io23 and it has been successfully 
installed and run on Windows 10 and Linux (Ubuntu 22.04) machines (including VMs on Azure). It has 
also been virtualised as a Docker container and a Helm chart, which eases its deployment on any 

 
22 https://nodejs.org/en 

23 https://socket.io/ 

https://nodejs.org/en
https://socket.io/


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 57 of 82 © 2023-2025 6G-XR Consortium 

machine with reasonable resources (e.g., tested on laptops and a PC with AMD Ryzen Threadripper 
3970X CPU (3.70 GHz) and 16 GB RAM), including those provided by hyper-scalers. 
 

7.1.4 Evolution compared to the previous release 

Table 18 lists and summarizes the features and capabilities of the Holo-Orchestrator, comparing the 
final released version to the first released one, reported in D3.1 [2].  

Table 18. Comparison of the first and final releases of the Holo-Orchestrator. 

Feature First release Final release 

Virtualisation Docker Docker and Helm Chart 

Information 

about clients 

Just semantic 

information, like 

nickname, user 

representation type, and 

session name 

API REST to retrieve and inform about IP 

address (and port) for each connected client, 

so this information can be provided to 

network entities. 

Session 

Management 

Session Management 

with sessions served by a 

single SFU 

Session and Lifecycle Management with 

sessions served by more than one SFU, and 

with intervention of Remote Renderers. 

New endpoints for two NaaS APIs: (ii) 

Network-assisted Rate Control to trigger rate 

adaptations or request QoD to the network; 

(ii) Edge-Cloud APIs 

Metrics -  It includes features to register Level of Service 

rules against the Metrics Monitoring 

Subsystem (e.g., upper delay thresholds for 

specific clients) and get alerts when these 

thresholds are reached/surpassed 

 

7.2 IMS SESSION MANAGER 

7.2.1 Description of the component 

The IMS SM serves as the foundational orchestrator for secure, low-latency, and real-time signalling 
across distributed components involved in immersive holographic communication experiences. 
The IMS SM is a core component responsible for orchestrating session signalling and coordination 
within an XR streaming distributed infrastructure in immersive holographic communication, 
particularly between the consumer UE "viewer”, and the AR media servers. It facilitates the real-time 
signalling required to establish, maintain the WebRTC-based holographic communication sessions over 
the IMS data channel. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 58 of 82 © 2023-2025 6G-XR Consortium 

 
Cloud-Based Signalling Architecture 
At the core of the signalling infrastructure is a dedicated Signalling Server deployed within a public 
cloud environment. This server acts as an intermediary between the DCSF, the hologram media 
processing servers, and the Agent UE “producer”. Communication between these entities is performed 
via bi-directional WebSocket connections, enabling the low-latency exchange of control-plane 
messages necessary for session negotiation. 
 
WebSocket Endpoints and SDP Exchange 
The IMS SM exposes a set of specialised WebSocket endpoints via its integrated HTTPS server: 

/sender – for AR media producer devices (Agent UE) 

/receiver – for consumer devices (Viewer UE) 

/hologram – for holographic rendering and streaming backends 

 
Clients connecting to these endpoints utilise WebRTC SDP offers and answers to negotiate media 
transmission parameters, including supported codecs, transport configurations (ICE candidates), and 
encryption details. This signalling exchange establishes peer-to-peer paths for holographic content 
delivery. 
 
Session Lifecycle and Participant Management 
Beyond signalling, the SM also functions as a stateful session controller, handling the lifecycle of user 
interactions and room-based collaboration spaces. Its responsibilities include: 

- Session Creation: Enables producers to instantiate a new session (holographic call or AR 
interaction). 

- Session Join/Leave: Allows viewers to join or disconnect from existing sessions. 
- Participant Management: Tracks active participants and synchronises their state within each 

session. 
- Room Cleanup: Detects and automatically frees unused or expired sessions to optimise 

resource utilisation. 
- Media Server Registry: Maintains a dynamic registry of available hologram media processing 

nodes and assigns them to sessions as needed. 

Implementation Details 
The SM is implemented in the Go programming language, leveraging its concurrency for efficient 
WebSocket handling and real-time signalling workloads. It follows the official Standard Go Project 
Layout (https://github.com/golang-standards/project-layout) to ensure maintainability, modularity, 
and adherence to industry best practices. 
 
Key architectural considerations include: 
- Scalability: Designed to handle thousands of concurrent signalling sessions through lightweight, 
event-driven handling. 
- Extensibility: Built to support future extensions such as identity management, advanced analytics, or 
QoS. 
- Interoperability: Ensures compatibility with IMS-based networks and standard WebRTC signalling 
conventions. 
 

https://github.com/golang-standards/project-layout


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 59 of 82 © 2023-2025 6G-XR Consortium 

7.2.2 Final hardware 

The IMS SM is deployed as a lightweight Docker container, ensuring portability and easy integration 
into cloud environments. It runs on Microsoft Azure VM with Ubuntu 22.04 LTS, using standard CPU-
based infrastructure without the need for GPUs or specialised hardware. It operates efficiently on 
general-purpose VMs (2–4 vCPUs, 4–8 GB RAM). All media processing is offloaded to dedicated servers, 
keeping the SM hardware-agnostic and cost-efficient. 

7.2.3 Final software 

The IMS SM Docker container encapsulates all necessary runtime components required for session 
signalling and control. At its core, the container includes an embedded HTTPS server that exposes 
dedicated WebSocket endpoints used to manage signalling flows between clients and servers. 

A key component of the software stack is its integrated WebRTC module, which provides support for 
Secure Real-time Transport Protocol (SRTP), enabling encrypted media streams for both sending and 
receiving. The implementation includes a multiplexing decoder/encoder capable of handling audio, 
video, and data channels over a single transport session, adhering to WebRTC multiplexing standards. 

Internally, the WebRTC module has a versatile architecture, with separate components responsible for 
connection handling, SDP negotiation, session state tracking, and error recovery. The Go-based 
implementation takes advantage of concurrent WebSocket sessions, ensuring high responsiveness and 
non-blocking operations under heavy load. This design provides the scalability and resilience required 
for real-time AR/XR communication environments. 

7.2.4 Evolution compared to the previous release 

Table 19 summarizes the improvements implemented in the IMS SM, comparing the final released 
version to the first released one. 

Table 19. Comparison of the first and final releases of the IMS Session Manager. 

Feature First release Final release 

Hologram 

resolution 

Basic low resolution used 

for first tests with limited 

bandwidth usage 

Optimisations of bandwidth usage by 

hologram 2D/3D data in order to control 

and adapt the hologram resolution 

UX/UI in WebGL Basic rendering of the 

hologram in WebGL, with 

no background and no 

control 

Improved rendering of the hologram in 

WebGL, with added background, and 

added control for the user to rotate the 

angle of view of the hologram 

Diagnostics and 

Troubleshooting 

Simple logs about 

connectivity among 

participants 

Verbose logs about session creation, 

joining, leaving and freeing have been 

added in order to troubleshoot potential 

connectivity issues 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 60 of 82 © 2023-2025 6G-XR Consortium 

8 INFRASTRUCTURE CONFIGURATION 

This section presents the infrastructure enablers to allow the configuration of the computing and 
network infrastructure needed to host the XR Enablers and provide them with the necessary resources. 
These enablers also allow dynamic modifications of the allocated resources, such as to adapt the 
infrastructure to the requirements of the XR Enablers at any given time. 

8.1 XR APPLICATION TRAFFIC REQUIREMENTS EXTRACTION 

8.1.1 Description of the component 

This enabler is designed to enhance resource allocation within a Wi-Fi connection, ensuring 
deterministic QoS for XR traffic by reserving access time to the communication channel. Figure 20 
depicts a demo setup of the developed enabler. The enabler implements a TSN gating mechanism at 
the Wi-Fi interfaces of communicating nodes (i.e., stations and access points), allowing it to coordinate 
traffic transmission, prevent collision and minimise delays for real-time XR traffic. A key concept of this 
mechanism is to generate a network-wide schedule that specifies time slots for each node to transmit 
its real-time traffic (XR stream) and best-effort traffic (BE stream), via Wireless TSN (WTSN) servers 
and ethernet Network Interface Controllers (NICs). This scheduling process is vital in wireless networks 
where the communication medium is shared among multiple nodes. 

To create these schedules, the enabler must possess details about the real-time traffic, including 
payload size, cycle time, burstiness, and other relevant parameters. However, traditional XR 
applications lack awareness of the gating mechanism, which hinders their ability to convey scheduling 
requirements or adapt to network manager-provided configurations. This enabler includes a second 
capability for monitoring and profiling of traffic flows. By estimating traffic patterns, the system 
generates a traffic profile utilised for schedule calculation and optimisation. This comprehensive 
approach ensures efficient resource utilisation and reliable QoS management within Wi-Fi networks, 
particularly for XR applications that demand timely data transmission. 

 

Figure 20. Demo setup enabling an XR-Application together with background traffic. 

 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 61 of 82 © 2023-2025 6G-XR Consortium 

8.1.2 Final hardware 

As depicted in Figure 20, the demo uses two servers equipped with AX210 NICs, supporting Wi-Fi 6, 
which act as a software access point and a Wi-Fi station, one GPU-equipped server that runs an XR 
application, and a Meta Quest 3 Headset that allows human interaction with the setup.  

8.1.3 Final software 

The software used includes: 

• On the XR server node: Windows 11 OS, Unity editor to host and run the XR application, 
Hololight stream SDK24 to allow XR streaming. 

• On the AP and STA servers: Ubuntu 22.04, WTSN server running as a daemon to profile traffic 
and configure the Wi-Fi link. 

• On the glasses: Hololight client application to read data from the sensors, send it to the server 
side and render the XR experience for the user. 

8.1.4 Evolution compared to the previous release 

Table 20 summarizes the improvements implemented in this enabler, comparing the final released 
version to the first released one. 

Table 20. Comparison of the first and final releases of the XR application traffic requirements extraction. 

Feature First release Final release 

Hardware Linux server on the access 

point side only. The XR 

Headset is the Wi-Fi client 

Linux server (e.g. Ubuntu 22.04) on 

both sides of the Wi-Fi link (i.e., 

access point and Wi-Fi station) 

Traffic Profiling On the access point side On the access point side 

Wi-Fi resource 

configuration 

No control over the Wi-Fi link 

access and resources on the 

XR client side (unidirectional 

resource control) 

full control of the Wi-Fi link access 

and resources on both sides 

(bidirectional resource control) 

8.2 MACHINE LEARNING-BASED EDGE CONTINUUM ENABLER 

8.2.1 Description of the component 

This enabler is designed to optimise the management of application instances deployed at edge nodes 
by forecasting future resource utilisation scenarios. It employs a time-series AI model that processes 
input data reflecting the current and historical resource workload status of all edge application 
instances. Subsequently, it predicts the resource usage for each application instance deployed across 

 
24 Holo-Light-GmbH/Hololight-Stream-SDK-Trial: Trial of Hololight Stream Software Development Kit. 

https://github.com/Holo-Light-GmbH/Hololight-Stream-SDK-Trial


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 62 of 82 © 2023-2025 6G-XR Consortium 

the nodes. Specifically, the model predicts CPU and Random Access Memory (RAM) resource 
consumption per application instance. 

This enabler comprises various components, as illustrated in Figure 21. The primary component is the 
Intelligent Edge Application Platform (IEAP)25, responsible for managing and orchestrating the edge 
nodes and applications. It incorporates APIs that facilitate real-time data retrieval to construct the 
dataset. The Data Collector periodically utilises these APIs to acquire new data, formats it for optimal 
use, and stores it in a TimescaleDB26 instance. This database is part of NetAnticipate27, a cloud-native, 
highly scalable, self-learning AI and machine learning (ML) framework. Within the context of this 
enabler, NetAnticipate assists data scientists by offering predefined templates for specific scenarios 
and provides an ML Operations (MLOps) environment to manage the lifecycle of ML models. 

 

Figure 21. Edge Continuum Enabler high-level diagram. 

To forecast resource usage values, a Long-Short Term Memory (LSTM) neural network has been 
employed, as it is a widely recognised model for time-series prediction due to its capacity to learn and 
retain long-term temporal dependencies. Although the LSTM model demonstrates sufficient 
generalisation capabilities across various applications, to validate the functionality of the enabler, 
three distinct applications are deployed on edge nodes. These applications represent diverse 
operational characteristics and are integrated with a dedicated API to enable dynamic control over 
resource utilisation, specifically, the ability to programmatically increase or decrease their CPU and 
RAM consumption on demand. Each application operates in one of two states, idle or demanding, with 
the demanding state induced through application-specific mechanisms: 

 
25 https://www.researchgate.net/figure/Capgeminis-Intelligent-Edge-Application-Platform_fig1_372867069 

26 https://docs.tigerdata.com/#TimescaleDB 

27 https://www.capgemini.com/wp-content/uploads/2023/03/NetAnticipate_-brochure_Mar-23.pdf 

https://www.researchgate.net/figure/Capgeminis-Intelligent-Edge-Application-Platform_fig1_372867069
https://docs.tigerdata.com/%23TimescaleDB
https://www.capgemini.com/wp-content/uploads/2023/03/NetAnticipate_-brochure_Mar-23.pdf


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 63 of 82 © 2023-2025 6G-XR Consortium 

• FFmpeg28: An open-source multimedia framework. The demanding state is triggered by 
activating a multimedia pipeline that encodes a video stream. 

• DeepStack29: An AI server hosting pre-trained models. The demanding state is induced by 
continuously performing inference tasks on two distinct images in parallel. 

• Stress-ng30: A Unix-based stress testing utility. The demanding state is activated via specific 
input parameters during execution. 

The idle state for each application is restored by terminating the associated processes, effectively 
halting resource-intensive operations. 

To orchestrate the transitions between the two states, an auxiliary custom application 
named Workloads Generator was deployed on a separate VM within the 5TONIC testbed. This 
application autonomously manages the two states of the aforementioned applications to produce a 
structured time series pattern suitable for model training. Specifically, it generates two random 
timestamps daily—one between 08:00 and 09:30, and another between 17:00 and 18:30—for each 
application. At the first timestamp, the application is placed under the demanding state; at the second 
one, the state is changed to idle. This routine is executed only on weekdays, with weekends reserved 
for operations in the idle state, thereby simulating realistic workday usage patterns. 

Nevertheless, to train and evaluate the LSTM model effectively, a large and representative dataset is 
required, as relying solely on real-time data collection over extended periods is deemed impractical. 
Consequently, a Synthetic Data Generator is introduced. This tool extrapolates one year of historical 
data based on a single day of real measurements collected by the Data Collector component. The 
differences between real and synthetic data are shown in Figure 22 and Figure 23. Although 
divergences are observed at finer levels of granularity, the overall trend remains consistent when 
analysed at a broader scale, as depicted in Figure 24, making it feasible for the AI/ML model to learn 
the overall pattern. 

These components—Workloads Generator, Synthetic Data Generator, and Data Collector—are all 
custom-developed Python applications. 

 
28 https://ffmpeg.org/ 

29 https://deepstack.readthedocs.io/en/latest/ 

30 https://github.com/ColinIanKing/stress-ng 

https://ffmpeg.org/
https://deepstack.readthedocs.io/en/latest/
https://github.com/ColinIanKing/stress-ng


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 64 of 82 © 2023-2025 6G-XR Consortium 

 

Figure 22. Real pattern for a weekday from 09:05 to 22:00. 

 

 

Figure 23. Synthetic pattern for one weekday from 09:05 to 22:00. 

 

Figure 24. Synthetic pattern for an entire week from 23-05-2025 09:05 to 30-05-2025 22:00. 

Following the training phase, the LSTM model was evaluated using real data collected from 
applications deployed on edge nodes. As illustrated in Figure 25, the values forecasted by the model 
are plotted alongside actual measurements for the edge node located in Madrid. The results 
demonstrate that the model successfully captures the underlying temporal patterns in the data, 
accurately predicting transitions between demanding and idle states for each application. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 65 of 82 © 2023-2025 6G-XR Consortium 

 

Figure 25. Forecasted values against real data at Madrid node from 23-05-2025 09:05 to 30-05-2025 22:00. 

In Figure 26, predictions are compared against synthetic data. While the dataset was also used during 
training—making it less suitable for rigorous performance validation—it nonetheless confirms that the 
model has learned key behavioural patterns, such as the absence of demanding events during 
weekends. 

 

Figure 26. Forecasted values against synthetic data at Madrid node from 23-05-2025 09:05 to 30-05-2025 
22:00.  

It is important to note that some forecasted values exhibit slight temporal shifts relative to the actual 
events, visible in both Figure 25 and Figure 26. This discrepancy arises from the inherent randomness 
in the start and end times of demanding periods in both real and synthetic datasets. The model 
demonstrates sufficient accuracy in identifying demanding and idle intervals. This predictive capability 
can be leveraged to classify application states using predefined thresholds, enabling proactive resource 
management and scheduling. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 66 of 82 © 2023-2025 6G-XR Consortium 

To address the validity of the model under real-world conditions, Figure 25 illustrated a direct 
comparison between predictions and empirically observed data was conducted at the edge node 
located in Madrid. The real measurements were generated through the controlled execution of three 
applications—FFmpeg, DeepStack, and Stress-ng—whose operating states were dynamically 
orchestrated by the Workloads Generator. This auxiliary tool automatically switches each application 
between idle and demanding states at randomized times within predefined weekday intervals, 
effectively simulating realistic workday usage patterns. This setup enabled the creation of a 
representative validation scenario in which the ability of the model to anticipate transitions in resource 
consumption could be rigorously tested. The results demonstrate that the LSTM model accurately 
forecasts these state changes, capturing, for example, increases in CPU usage during active phases and 
decreases during idle periods. This predictive capability confirms that the model has effectively learned 
the relevant temporal patterns and that its performance is sufficiently reliable to support proactive 
orchestration strategies, such as dynamic scaling or application migration at the network edge. 

8.2.2 Final hardware 

The final hardware infrastructure comprises four distinct bare-metal servers, each dedicated to hosting 
specific software components. These machines, illustrated at the hardware layer in Figure 27, have the 
following configurations: 

• LEG15COMP1: A high-performance server featuring 128 GB of RAM, 1.2 TB of storage, and 40 
CPU cores. 

• LEG15COMP2: Identical in configuration to LEG15COMP1, with the addition of an NVIDIA Tesla 
P4 GPU, enabling hardware acceleration for AI and ML workloads. 

• LEG15COMP4: While offering the same CPU capabilities (40 logical cores), this server is more 
resource-constrained in terms of memory and storage, equipped with 32 GB of RAM and 100 
GB of disk space. 

• LEG15UTILS1: A utility server provisioned with 64 GB of RAM, 1 TB of storage, and 4 logical 
CPU cores, suitable for lightweight or auxiliary services. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 67 of 82 © 2023-2025 6G-XR Consortium 

 

Figure 27. Final hardware and software. 

8.2.3 Final software 

The complete software stack is illustrated in Figure 27, specifically across Virtualisation Layers 1 and 2. 
The Python-based applications—Data Collector and Workloads Generator—which are integral to the 
enabler functionality, have been previously described in Section 8.2.1. 

The deployment details across the infrastructure are as follows: 

• On LEG15COMP1, within the VM ISV-Docker-Edge2, a Grafana instance is deployed. This 
Docker-based application is responsible for visualising the various metrics and graphs 
referenced in Section 8.2.1. 

• The NetAnticipate framework is deployed on a Kubernetes cluster hosted within a VM of the 
same name, running on LEG15COMP2. Additionally, this bare-metal server also hosts a second 
Kubernetes cluster that functions as the Madrid edge node. 

• The Valencia edge node is deployed on LEG15COMP4, also using Kubernetes for orchestration. 

• The centralised IEAP logic, which manages both edge nodes and their associated applications, 
is deployed as a set of Docker containers on LEG15UTILS1. 

• Although not shown in Figure 27 due to its one-time execution, the Synthetic Data Generator 
has been developed and executed locally. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 68 of 82 © 2023-2025 6G-XR Consortium 

8.2.4 Evolution compared to the previous release 

The ML-based edge continuum enabler encompasses both the Scalability Enabler and the Edge 
Continuum Enabler, as previously introduced in Deliverable D3.1, the implementation of which had 
not yet begun at that time. Thus, this enabler has been developed during the second period of WP3 to 
analyse application-level consumption data to generate predictive insights into future system states. 
These insights can subsequently inform proactive orchestration strategies, such as migration or scaling 
decisions, that are executed transparently without impacting the end-user experience. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 69 of 82 © 2023-2025 6G-XR Consortium 

9 KPI AND TELEMETRY 

This section presents the final version of the monitoring system being developed to store, visualise and 
exploit KPIs collected from the XR Enablers. 

9.1 MONITORING SYSTEM 

9.1.1 Description of the component 

This section describes the modules developed for collecting and displaying metrics from key 

components of the developed XR Enablers, including the Native player, SFU, MCU, Holo Orchestrator 

and Web Players. 

In the first project period, as reported in D3.1 [2], the system was designed and implemented by using 

widely adopted components for such purposes, like Prometheus31 and Grafana32. Its high-level 

architecture is sketched in Figure 28, and its main components are: 

• HoloMIT SDK for Unity: it provides relevant metrics of the Native Player, both as producer and 

consumer of XR content. 

• Prometheus Push Gateway: it enables the connection between the HoloMIT SDK for Unity and 

Prometheus for the reception and storage of metrics. 

• Prometheus: toolset for alerting and monitoring, gathering metrics and storing them in a time-

series database from several sources, including the Push Gateway. It further offers querying 

tools for retrieving and examining metrics data. 

• Grafana: platform for analytics and visualisation establishing a data source connection with 

Prometheus and pulls metrics data for display. It gives the ability to design dashboards for 

data analysis, tracking system performance, and visualising metrics trends. 

 
31 https://prometheus.io/ 

32 https://grafana.com/ 

https://prometheus.io/
https://grafana.com/


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 70 of 82 © 2023-2025 6G-XR Consortium 

 

Figure 28. High-level architecture of the metrics measurement and registration system. 

The overall workflow for metrics registration and visualisation is summarised as follows: 

• The Native player generates its internal metrics (other XR enablers such as SFU, MCU, Holo 

Orchestrator and Web Players work similarly). 

• The configured metrics are pushed to the Prometheus Push Gateway. 

• Prometheus periodically pulls metrics data from the Push Gateway and stores it in its time 

series database. 

• Grafana connects to Prometheus as a data source and retrieves metrics data. 

• Users access Grafana to visualise metrics data through custom dashboards and panels. 

In the second period of the project, the metrics monitoring system has been evolved and extended to 
be able to register Level of Service (LoS) rules from the Holo Orchestrator and to trigger alerts to the 
Holo Orchestrator when such LoS rules are violated. Figure 29 provides a high-level overview of the 
developed workflow, while Figure 30 provides more details about the three newly added components: 

• AlertManager: it retrieves the alerts sent by the Prometheus instance to be able to start the 

pipeline of action against that alert. 

• AlertManager2Kafka: it interfaces with the AlertManager to connect to a Kafka bus. 

• Kafka bus: it retains messages on a publication/subscription basis; another module can connect 

to the Kafka bus to check the alerts sent by the AlertManager and perform a corrective action. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 71 of 82 © 2023-2025 6G-XR Consortium 

 

Figure 29. High-level workflow between the Holo Orchestrator and metrics monitoring sub-system. 

 

 

Figure 30. New modules of the metrics monitoring sub-system to notify about alerts. 

9.1.2 Key Performance Indicators 

This section reports on a selection of metrics measured/reported from/for each XR Enabler. 

Native Player: 

Table 21. KPIs of the Native Player component. 

Metrics Description 

Resources Usage Metrics 

Sent/Received Bandwidth (Mbps) Total traffic sent/received by the native player (Mbps) 

CPU Usage (%) Percentage of CPU resources used by the Remote 
Renderer 

RAM Usage (MB) RAM resources used by the Remote Renderer 

GPU Usage (%) Percentage of GPU resources used by the Remote 
Renderer 

Point Cloud Encoding / Transmission 

Frames per second (fps) Number of frames per second that are encoded and 
transmitted 

Points per Cloud (#) Number of points per each Point Cloud frame 

Holo
Client

Holo Server
(SFU / MCU)

Holo
Orchestrator

Network 
Functions

Cross-Layer 
Metrics

Edge 
Orchestrator

Session 
Initiation

Holo
Session

Holo
Network 
Infra

Level-of-Service 
(LoS) Registration

Alert ManagerA. Rate Adaptation

B. Resources Allocation

C. Network Prioritzation



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 72 of 82 © 2023-2025 6G-XR Consortium 

Average Point Size (#) Average size of each Point within a Point Cloud frame 

Encoding latency (ms) Latency of the encoding process (ms) 

Point Cloud Decoding / Reception 

Frames per second (fps) Number of frames per second that are received and 
decoded 

Points per Cloud (#) Number of points per each Point Cloud frame 

Average Point Size (#) Average size of each Point within a Point Cloud frame 

Decoding latency (ms) Latency of the decoding process (ms) 

E2E latency (ms) Latency of the end-to-end pipeline 

 

Selective Forwarding Unit: 

Table 22. KPIs of the SFU component. 

Metrics Description 

CPU Usage (%) Percentage of CPU resources used by the SFU 

Input bandwidth (Mbps) Amount of traffic received by the SFU 

Output bandwidth (Mbps) Amount of traffic forwarded by the SFU 

Uplink delay / frame (ms) Delay from the originating clients to the SFU for each 
incoming frame 

 

Multipoint Control Unit: 

Table 23. KPIs of the MCU component. 

Metrics Description 

Incoming frame latency (ms) Latency for each incoming frame to the MCU 

Input fps (#) Number of frames/sec received by the MCU 

Frame decoding time (ms) Latency to decode each incoming frame 

Frame decoding rate (#) Frames that are decoded per time interval 

Frame fusion size (MB) Size of each fused frame 

Frame fusion latency (ms) Latency to fuse frames from each player 

Frame fusion fps (#) Number of frames/sec received by the MCU per time 

interval (s) 

Frame encoding time (ms) Latency to encode each fused frame 

Fusion MCU latency (ms) Latency of the MCU fusion process 

Output fps (#) Number of frames/sec delivered by the MCU to each 

player 

 

WebRTC streaming (Remote Renderer to WebRTC Web Player): 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 73 of 82 © 2023-2025 6G-XR Consortium 

Table 24. KPIs for WebRTC streaming from the Remote Renderer to the WebRTC Web player. 

Flow Metric Description 

Audio timestamp (ms) Current timestamp 

jitter (ms) RTP packet jitter for this media flow 

packetsLost/sec (packets/s) Total number of RTP packets lost per second for this 
media flow 

packetsReceived/sec 
(packets/s) 

Total number of RTP packets received per second for 
this media flow, it includes retransmissions 

bytesReceived/sec 
(bytes/s) 

Total number of bytes received per second for this 
media flow, it includes retransmissions 

totalSamplesDuration Represents the total duration in seconds of all 
samples that have been received. 

Audio Level  Represents the audio level of the media source. 
Video timestamp (ms) Current timestamp 

jitter (ms) RTP packet jitter for this media flow 

jitterBufferDelay (s) Time taken for each frame of video from the time 
the first packet is received by the buffer of the 
player to the time it is output 

packetLost/sec (packets/s) Total number of RTP packets lost per second for this 
media flow 

packetsReceived/sec 
(packets/s) 

Total number of RTP packets received per second for 
this media flow, it includes retransmissions 

bytesReceived/sec 
(bytes/s) 

Total number of bytes received per second for this 
media flow, it includes retransmissions 

totalFreezesDuration (s) Total time that the video has been stopped in the 
same frame without being able to continue playback 

framesReceived/sec (fps) Represents the number of full frames received per 
sec 

frameHeight (pixels) Represents the height of the last received frame 

frameWidth (pixels) Represents the width of the last received frame 

framesDecoded/sec (fps) Represents the total number of frames successfully 
decoded 

 

DASH streaming (Remote Renderer to DASH Web Player): 

Table 25. KPIs for DASH streaming from the Remote Renderer to the DASH Web player. 

Metric Description 

audio repIndex The current audio representation index 

audio bitrate (kbit/s) The encoding bitrate of the current audio representation 
audio bufferLevel (s) Current audio buffer level 

video repIndex The current video representation index 

video bitrate (kbit/s) The encoding bitrate of the current video representation 
video bufferLevel (s) Current video buffer level 

video framerate (fps) Frame rate of the current video representation 

video frameHeight (pixels) Height of the current video representation 

video frameWidth (pixels) Width of the current video representation 
liveLatency (s) Live latency during playback 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 74 of 82 © 2023-2025 6G-XR Consortium 

averageThroughput (kbit/s) Average estimated network throughput 

 

Holo Orchestrator: 

Table 26. KPIs for the Holo Orchestrator component. 

Metric Description 

Active Sessions (#) Number of active holoconferencing sessions managed by the 
Orchestrator 

Number of users / session (#) Number of active users for each running session 

Types of users / session Arrays with the types of representation formats of each user for 
each session 

Active SFUs / session (#) Number of active SFUs for each running session 

Active MCUs / session (#) Number of active MCUs for each running session 

 

ML-Based Edge Continuum enabler: 

Table 27. KPIs for the ML-Based Edge Continuum enabler 

Metrics Description 

CPU Usage (%) Percentage of CPU resources used by each application 

RAM Usage (MB) RAM resources used by the application 

Available CPU (milliCores) Percentage of CPU resources available in the edge infrastructure 

Available RAM (MB) Amount of RAM available in the edge infrastructure 

 

As a proof of concept, Figure 31 shows some screenshots captured by the Grafana dashboard reporting 

on key metrics captured at XR Enablers such as the native Unity player and the SFU for a real running 

holographic communication session.  

 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 75 of 82 © 2023-2025 6G-XR Consortium 

 

Figure 31. Grafana dashboards showing collected metrics from XR Enablers. 

9.1.3 Final hardware 

This monitoring system does not impose strict computing (CPU or GPU) or memory requirements for 
installation and execution. However, the monitored metrics require storage space to allocate the 
Prometheus database for the metrics that will be captured during the testing of 6G-XR use cases. 
Storage capacity should be in the order of a few tens of gigabytes (GBs) for such a purpose. 

9.1.4 Final software 

This monitoring system has been installed and can run on different Windows and Ubuntu machines, 

including physical ones and deployments on Azure. For the main software requirements and 

dependencies, please refer to the documentation from Prometheus33 and Grafana34. 

9.1.5 Evolution compared to the previous release 

Table 28 lists and summarizes the features and capabilities of the Monitoring System, comparing the 
final released version to the first released one, reported in D3.1 [2].  

Table 28. Comparison of the first and final releases of the Monitoring System. 

Feature First release Final release 

Deployment/Virtualisation Deployment on 

machines on bare-

metal 

Deployment using Docker Compose 

or Helm Charts 

 
33 https://prometheus.io/ 

34 https://grafana.com/ 

https://prometheus.io/
https://grafana.com/


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 76 of 82 © 2023-2025 6G-XR Consortium 

Aggregation of metrics Not available Prometheus from different XR 

enablers can be aggregated within 

the same metrics monitoring sub-

system 

Alerting Sub-system Not available Development of an alerting sub-

system and associated workflow to 

register LoS rules and get 

notifications when such rules are 

violated 

9.1.6 Dataset exporters 

The final release of the monitoring system is capable of measuring, reporting, and visualising key 
performance and operational metrics in near real-time. Furthermore, it incorporates advanced 
functionalities such as alert management to enhance system supervision. 

By leveraging Prometheus and the Prometheus Push Gateway, the system also facilitates the seamless 
generation and export of datasets to databases or structured textual formats. However, the actual 
dataset collection will be conducted during the validation and testing phases of the use cases defined 
in WP6. Then, a comprehensive description of the collected datasets will be included in the 
corresponding WP6 deliverable (D6.1 “Holographic Use Case integration and validation and KPVI 
assessment”). 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 77 of 82 © 2023-2025 6G-XR Consortium 

10 SUMMARY 

This deliverable details the XR Enablers developed within WP3. The objective of these XR Enablers is 
to establish the necessary E2E multimedia pipeline to support the deployment of three UCs: 

• UC1 – Resolution Adaptation or Quality on Demand. 

• UC2 – Routing to the Best Edge. 

• UC3 – Control Plane Optimisation. 

UC1 and UC2 leverage the XR Enablers integrated with the network user plane to deliver VR 
experiences, whereas UC3 focuses on the evolution of the IMS system as a key component of the 
network control plane, enabling AR services. 

To support these use cases, the XR Enablers cover a broad set of capabilities: 

• Volumetric capture through multi-sensor setups and 3D reconstruction. 

• Cloud/edge-enabled multimedia processing to ensure scalability and broaden access for end 
users. 

• Multiprotocol media delivery compatible with heterogeneous devices. 

• Clock and media synchronisation mechanisms. 

• Session management and media orchestration functionalities. 

• Infrastructure configuration tools to optimise resource allocation for media processing tasks. 

• A KPI monitoring system focused on multimedia performance metrics. 

The final versions of the developed XR Enablers are described in this document, including the hardware 
and software components used for their implementation. 

The XR Enablers have been integrated into the computing infrastructure of the 6G-XR South Node test 
facilities, namely 5TONIC (Madrid, Spain) and i2CAT (Barcelona, Spain), where the three UCs will be 
tested. 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 78 of 82 © 2023-2025 6G-XR Consortium 

11 REFERENCES 

[1] 6G-XR, “Requirements and use case specifications,” Deliverable D1.1, September 2023. Available 
at: https://6g-xr.eu/deliverables/ 

[2] 6G-XR, “Initial versions of XR enablers,” Deliverable D3.1, June 2024. Available at: https://6g-
xr.eu/deliverables/ 

[3] Fernández, Sergi, et al. “Multiparty holomeetings: Toward a new era of low-cost volumetric 

holographic meetings in virtual reality.” IEEE Access, volume 10. 2022. Doi: 

https://doi.org/10.1109/ACCESS.2022.3196285 

[4] 6G-XR, “Orchestration, AI techniques, End-to-end slicing and Signalling for the core enablers – 
design,” Deliverable D2.1, February 2024. Available at: https://6g-xr.eu/deliverables/ 

[5] Fernández, Sergi, et al. “Addressing Scalability for Real-time Multiuser Holo-portation: Introducing 

and Assessing a Multipoint Control Unit (MCU) for Volumetric Video.” Proceedings of the 31st ACM 

International Conference on Multimedia. 2023. Doi: https://doi.org/10.1145/3581783.361377 

[6] Yeregui, Inhar, et al. “Edge Rendering Architecture for multiuser XR Experiences and E2E 

Performance Assessment.” 2024 IEEE International Symposium on Broadband Multimedia Systems 

and Broadcasting (BMSB). IEEE, 2024. Doi: https://doi.org/10.1109/BMSB62888.2024.10608249 

[7] Mejías, Daniel, et al. “Streaming Remote rendering services: Comparison of QUIC-based and 
WebRTC Protocols.” 2025 IEEE International Symposium on Broadband Multimedia Systems and 
Broadcasting (BMSB). IEEE. To appear online in 2025. 

[8] Mejías, Daniel, et al. “Remote Rendering for Virtual Reality: performance comparison of 
multimedia frameworks and protocols.” 2025 IEEE International Mediterranean Conference on 
Communications and Networking (MeditCom). IEEE. To appear online in 2025. 

[9] 6G-XR, “Final deployment of beyond 5G RAN, core, and open-source networks, disruptive RAN 
technologies and trial controller,” Deliverable D4.3, June 2025. Available at: https://6g-
xr.eu/deliverables/ 

[10]6G-XR, “Core and Edge enablers delivery result”, Deliverable D2.3, May 2025. Available at: 
https://6g-xr.eu/deliverables/ 

https://6g-xr.eu/deliverables/
https://6g-xr.eu/deliverables/
https://6g-xr.eu/deliverables/
https://doi.org/10.1109/ACCESS.2022.3196285
https://6g-xr.eu/deliverables/
https://doi.org/10.1145/3581783.3613777
https://doi.org/10.1109/BMSB62888.2024.10608249
https://6g-xr.eu/deliverables/
https://6g-xr.eu/deliverables/
https://6g-xr.eu/deliverables/


6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 79 of 82 © 2023-2025 6G-XR Consortium 

APPENDIX A - R32 LIGHT-FIELD CAMERA FACTSHEET 

R32v2 factsheet 

 

Sensor 

Image sensor Onsemi XGS 32000  

Lateral resolution (H x V) 6560 x 4948 pixel2  

Lateral resolution (MegaPixel) 32.4 MP 

Effective lat. resolution (H x V) 3280 x 2474 pixel2 

Effective lat. resolution (MegaPixel) 8.1 MP 

Active area 21.0 x 15.8 mm2 

Pixel length 3.2 µm 

Shutter type Global shutter 

Frame rate 36 fps 

ADC resolution 12 bits 

Spectrum Colour 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 80 of 82 © 2023-2025 6G-XR Consortium 

Spectral response 

 

Cover glass removed? Yes 

Sensor interface HiSPi 

Micro lens array 

MLA type L1-D500-A010-Vae-VI 

Light-field mode  Galilean multi focused plenoptic 2.0  

Micro lens types  3 

Geometry hexagonal 

Layout 

 

Aperture f/3.8 

Lens pitch 500 µm 

  

Camera interface CoaXPress (2.5–12.5 Gbps); Micro-BNC (HD‑BNC) connector 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 81 of 82 © 2023-2025 6G-XR Consortium 

Camera interface bandwidth CXP Speed Bandwidth Cable length fps @ full res. 

 CXP-2 2.5 Gbps 180m 7 

CXP-3 3.125 Gbps 100m 9 

CXP-5 5 Gbps 60m 14 

CXP-6 6.25 Gbps 40m 18 

CXP-10 10 Gbps 40m 29 

CXP-12 12.5 Gbps 30m 36 

Power Recommended: Power over CoaXPress (PoCXP): 24 VDC supplied via the camera's 
Micro-BNC (HD‑BNC) connector. 11 W (typical) 

Not Recommended: Power supply via I/O connector: operating voltage 24 VDC. 
Minimum 18.6 VDC. Maximum 26 VDC. 

I/O  M8 6-pin female connector (IEC 61076-2-104) 

Recommended mating connector: M8 6-pin male 

Pinout Pin Line Function 

 

1 - 24 VDC power 

2 Line 1 Opto-coupled I/O input 

3 - Ground for opto-coupled I/O 

4 Line 2 General purpose I/O (GPIO) 

5 Line 3 General purpose I/O (GPIO) 

6 -  Ground for camera power and General Purpose 
I/O (GPIO) 

Size (L x W x H) 50 x 80 x 80 mm3 



6G XR | D3.2: Final versions of XR enablers (V1.0) | Public 

 

 Page 82 of 82 © 2023-2025 6G-XR Consortium 

 

 

Weight 550 g 

Mount Custom, thermal decoupling of lens and camera body 

  

OEM Basler Lens 

Type  Based on F-S35-3528-45M-S-SD 

Focal length 35 mm 

Aperture*  f/1.8  

Focus range* 0.2 - 3.5m 

Angle of View (on R32) Horizontal: 33°  

Vertical: 25°  

 

 

 

 

 

 

 

 

 


	Disclaimer
	Copyright notice
	EXECUTIVE SUMMARY
	Table of Contents
	LIST OF FIGURES
	LIST OF TABLES
	ABBREVIATIONS
	1 INTRODUCTION
	1.1 Objectives of the deliverable
	1.2 Structure of the deliverable
	1.3 Target audience of the deliverable

	2 END-TO-END DIAGRAM OF COMMUNICATIONS
	2.1 VR user plane
	2.2 AR control plane

	3 MULTI-SENSOR VOLUMETRIC RECONSTRUCTION
	3.1 Video capture
	3.1.1 Description of the component
	3.1.2 Final hardware
	3.1.3 Final software
	3.1.4 Evolution compared to the previous release

	3.2 Video reconstruction
	3.2.1 Description of the component
	3.2.2 Final hardware
	3.2.3 Final software
	3.2.4 Evolution compared to the previous release


	4 CLOUD/EDGE XR PROCESSING AND SCALABILITY
	4.1 Selective Forwarding Unit
	4.1.1 Description of the component
	4.1.2 Final hardware
	4.1.3 Final software
	4.1.4 Evolution compared to the previous release

	4.2 Multipoint Control Unit
	4.2.1 Description of the component
	4.2.2 Final hardware
	4.2.3 Final software
	4.2.4 Evolution compared to the previous release

	4.3 Remote Renderer
	4.3.1 Description of the component
	4.3.2 Final hardware
	4.3.3 Final software
	4.3.4 Evolution compared to the previous release


	5 ADAPTIVE LOW-LATENCY XR DELIVERY
	5.1 Native player
	5.1.1 Description of the component
	5.1.2 Final hardware
	5.1.3 Final software
	5.1.4 Evolution compared to the previous release

	5.2 WebRTC streaming to web player
	5.2.1 Description of the component
	5.2.2 Final software
	5.2.3 Final hardware
	5.2.4 Evolution compared to the previous release

	5.3 DASH streaming to web player
	5.3.1 Description of the component
	5.3.2 Final software
	5.3.3 Final hardware
	5.3.4 Evolution compared to the previous release


	6 MULTI-MODAL SYNCHRONISATION
	6.1 Clock synchronisation
	6.2 Media synchronisation
	6.2.1 Final evaluation of media synchronisation


	7 SESSION MANAGEMENT AND XR MEDIA ORCHESTRATION
	7.1 Holo-orchestrator
	7.1.1 Description of the component
	7.1.2 Final hardware
	7.1.3 Final software
	7.1.4 Evolution compared to the previous release

	7.2 IMS session manager
	7.2.1 Description of the component
	7.2.2 Final hardware
	7.2.3 Final software
	7.2.4 Evolution compared to the previous release


	8 INFRASTRUCTURE CONFIGURATION
	8.1 XR application traffic requirements extraction
	8.1.1 Description of the component
	8.1.2 Final hardware
	8.1.3 Final software
	8.1.4 Evolution compared to the previous release

	8.2 Machine Learning-Based Edge Continuum Enabler
	8.2.1 Description of the component
	8.2.2 Final hardware
	8.2.3 Final software
	8.2.4 Evolution compared to the previous release


	9 KPI AND TELEMETRY
	9.1 Monitoring system
	9.1.1 Description of the component
	9.1.2 Key Performance Indicators
	9.1.3 Final hardware
	9.1.4 Final software
	9.1.5 Evolution compared to the previous release
	9.1.6 Dataset exporters


	10 Summary
	11 References
	Appendix A - R32 light-field camera factsheet

