

WWW.6G-XR.EU

Grant Agreement No.: 101096838 Topic: HORIZON-JU-SNS-2022-STREAM-C-01-01
Call: HORIZON-JU-SNS-2022 Type of action: HORIZON-JU-RIA

D2.3: Core and Edge enablers delivery
result

Revision: v.1.0

Work package WP 2

Task Task 2.5

Due date 31/05/2025

Submission date 29/05/2025

Deliverable lead ERI

Version 1.0

Authors Diego San Cristobal, Rocio Dominguez (ERI), Antti Pauanne, Jani Pellikka, Kenichi
Komatsu, Hamid Ahmed, Mahdi Salmani, Afeez Afuwape (UOULU), Aurora Ramos,
Javier Godas, Enrique Lluesma (CGE), Javier Fernández (i2CAT), Fernando Pargas
(TID)

Reviewers Jarno Pinola (VTT), Miguel Glassée (IMEC), Mohammed Al-Rawi, Jonathan Rodriguez
(IT)

Abstract This document reports the work done by the WP2 partners on developing, deploying
and validating the integration of the Core and Edge enablers of the project

Keywords XR, Extended Reality, Core, Edge, enablers, orchestration, APIs, slicing, optimization,
session management

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 2 of 84 © 2023-2025 6G-XR Consortium

Document Revision History

Version Date Description of change List of contributor(s)

V0.1 08/04/2024 1st version of the template Diego San-Cristobal (Ericsson)

V0.2 25/04/2025 Version ready for partners review All authors

V0.3 05/05/2025 Version after partners review to be addressed by
the authors

Jarno Pinola (VTT), Miguel Glassée
(IMEC)

V0.4 15/05/2025 Version ready for TM review All authors

V0.5 21/05/2025 Version after TM review to be addressed by the
authors

Mohammed Al-Rawi (IT)

V1.0 29/05/2025 Version ready for submission All authors

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 3 of 84 © 2023-2025 6G-XR Consortium

DISCLAIMER

6G-XR (6G eXperimental Research infrastructure to enable next-generation XR services) project has
received funding from the Smart Networks and Services Joint Undertaking (SNS JU) under the
European Union’s Horizon Europe research and innovation programme under Grant Agreement No
101096838. This work has received funding from the Swiss State Secretariat for Education,
Research, and Innovation (SERI).

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect
those of the European Union. Neither the European Union nor the granting authority can be held
responsible for them.

COPYRIGHT NOTICE

© 2023 - 2025 6G-XR Consortium

Project co-funded by the European Commission in the Horizon Europe Programme

Nature of the deliverable: R

Dissemination Level

PU
Public, fully open, e.g. web (Deliverables flagged as public will be automatically
published in CORDIS project’s page)

✓

SEN Sensitive, limited under the conditions of the Grant Agreement

Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444

Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444

Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444

* R: Document, report (excluding the periodic and final reports)

DEM: Demonstrator, pilot, prototype, plan designs

DEC: Websites, patents filing, press & media actions, videos, etc.

DATA: Data sets, microdata, etc.

DMP: Data management plan

ETHICS: Deliverables related to ethics issues.

SECURITY: Deliverables related to security issues

OTHER: Software, technical diagram, algorithms, models, etc.

https://digital-strategy.ec.europa.eu/en/policies/smart-networks-and-services-joint-undertaking
https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe_en
https://www.sbfi.admin.ch/sbfi/en/home.html
https://www.sbfi.admin.ch/sbfi/en/home.html
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 4 of 84 © 2023-2025 6G-XR Consortium

EXECUTIVE SUMMARY

This document reports the work done by the partners to deploy and develop in the South and North
Nodes the Core and Edge enablers identified and designed in previous stages of the project.

Partners have followed a continuous development, deployment and integration approach to produce
and validate the enablers. This means that each phase is an iterative process where small bits are
implemented, tested and corrected if needed, before adding new pieces to the whole. The plan was
to fully develop the enablers between March 2024 and October 2024. The deployment of the early
releases of the enablers was started in July 2024, allowing time to deploy, test and debug the code,
and finally accept the enablers by May 2025.

The Madrid Edge Orchestrator has been further enhanced to provide the framework to hold
northbound interface (NBI) APIs, to support Graphic Processing Unit (GPU) based containerized
applications, to be compatible with Helm packages for orchestrating applications, to support NVIDIA
GPUs, and to allow persistent volume support for Helm. Two servers were deployed to form the
Barcelona Edge platform, with support for GPU-intensive workloads. Both Edges are federated,
providing features of federation management, availability zone synchronization, artefact
management, application onboarding management and application deployment management.

A mechanism to adapt the QoS for data sessions has been developed. The QoS can be adapted by
interacting with the Quality on Demand (QoD) CAMARA API, which then calls the QoS Session
Network Exposure Function (NEF) API for the modification in the 5G network. The Simple Edge
discovery tool makes use of the User Equipment (UE) Location NEF API for identifying the most
suitable Edge. Additionally, 5G network performance and utilization metrics can be requested using
the data collection API.

The IMS Data Channel (IMSDC) solution is deployed in the South Node to allow enhanced extended
reality (XR) services when dialling from the phone. Work was done to optimize connectivity and data
transmission performance. The IMSDC has been integrated with the 5G Core at 5Tonic lab.

The North Node Adapter can obtain metrics per slice from Qosium probes, can create and delete
network slices through the Cumucore REST API, interacts with the AI-based network resource
optimization tool, instantiates virtual machines via Open Source MANO and calls the open vSwitch to
apply policy rates.

It has been validated that the clients subscribed to all relevant energy management topics
successfully received live data from energy monitoring equipment. The forecasting APIs are correctly
called, parsed, formatted, stored and visualized.

The deliverable ends with a section to collect the evidence of the integration validation tests,
certifying that the enablers work as expected and are therefore ready for the project use cases
validation.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 5 of 84 © 2023-2025 6G-XR Consortium

TABLE OF CONTENTS

Disclaimer .. 3

Copyright notice .. 3

1 INTRODUCTION .. 12

1.1 Objective of the deliverable ... 12

1.2 Structure of the deliverable ... 12

1.3 Target Audience of the deliverable ... 12

2 INITIAL ENABLERS DEVELOPMENT AND INTEGRATION PLAN ... 13

2.1 GENERAL APPROACH ... 13

2.2 INITIAL TIME PLAN ... 14

3 ENABLERS DEVELOPMENT PHASE ... 16

3.1 SOUTH NODE USER PLANE ENABLERS ... 16

3.1.1 E1.1 IEAP Edge orchestrator development ... 16

3.1.2 E2.1 Barcelona Edge orchestrator development .. 19

3.1.3 E4.1 QoD API development .. 21

3.1.4 E4.2 Simple Edge Discovery API development.. 23

3.1.5 E4.3 Traffic Influence API development ... 24

3.1.6 E5.1 Edge Federation development ... 24

3.1.7 E6.1 Service Parameter API development .. 26

3.1.8 E6.2 UE Location API development .. 27

3.1.9 E6.3 QoS Session API development .. 28

3.1.10 E6.4 Data Collection API development ... 29

3.2 SOUTH NODE CONTROL PLANE ENABLERS .. 30

3.2.1 E9.1 IMS Data Channel Server development .. 30

3.3 NORTH NODE 3D DIGITAL TWIN ENABLERS .. 31

3.3.1 E3.1 North Node adapter development ... 31

3.3.2 E3.2 3D Digital Twin development ... 34

3.3.3 E3.4 Resource Optimization development ... 35

3.3.4 E7.1 Cumucore Slice Management API development .. 36

3.4 NORTH NODE ENERGY FRAMEWORK ENABLERS ... 36

3.4.1 E3.3 Energy Management development .. 37

3.4.2 E8.1 OAIBOX development ... 38

4 ENABLERS DEPLOYMENT PHASE ... 39

4.1 SOUTH NODE USER PLANE ENABLERS ... 39

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 6 of 84 © 2023-2025 6G-XR Consortium

4.1.1 E1.1 IEAP Edge orchestrator & APIs deployment ... 39

4.1.2 E2.1 Barcelona Edge orchestrator deployment .. 40

4.1.3 E5.1 Edge Federation deployment ... 43

4.1.4 Network Exposure Function (NEF) APIs deployment ... 47

4.2 SOUTH NODE CONTROL PLANE ENABLERS .. 48

4.2.1 E9.1 IMS Data Channel Server deployment .. 48

4.3 NORTH NODE 3D DIGITAL TWIN ENABLERS .. 49

4.3.1 E3.1 North Node adapter deployment ... 49

4.3.2 E3.2 3D Digital Twin deployment ... 51

4.3.3 E3.4 Resource Optimization Deployment ... 53

4.3.4 E7.1 Cumucore Slice Management API deployment .. 54

4.4 NORTH NODE ENERGY FRAMEWORK ENABLERS ... 55

4.4.1 E3.3 Energy Management deployment .. 55

4.4.2 E8.1 OAIBOX deployment ... 56

5 ENABLERS INTEGRATION VALIDATION PHASE ... 58

5.1 SOUTH NODE USER PLANE ENABLERS ... 58

5.1.1 Edge Federation validation ... 58

5.1.2 QoS change validation .. 64

5.1.3 Finding closest Edge validation .. 65

5.1.4 Changing UPF validation ... 66

5.1.5 Collecting metrics validation .. 68

5.2 SOUTH NODE CONTROL PLANE ENABLERS .. 69

5.2.1 IMS VMs connectivity validation .. 69

5.3 NORTH NODE 3D DIGITAL TWIN ENABLERS .. 71

5.3.1 NNA – Qosium Integration Test .. 71

5.3.2 NNA – Cumucore Integration Test.. 72

5.3.3 NNA – AI/ML Integration Test .. 74

5.3.4 NNA – OSM Integration Test .. 74

5.3.5 NNA – OVS Integration Test ... 75

5.3.6 North Node Web Portal – Qosium Measurement Integration Test ... 76

5.4 NORTH NODE ENERGY FRAMEWORK ENABLERS ... 77

5.4.1 Data exchange between VTT and UOULU gNB sites using MQTT bridge broker integration 77

5.4.2 North Node UOULU forecasting APIs integration .. 79

6 CONCLUSIONS .. 83

7 REFERENCES ... 84

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 7 of 84 © 2023-2025 6G-XR Consortium

LIST OF FIGURES

FIGURE 1: CONTINUOUS DEVELOPMENT, DEPLOYMENT AND INTEGRATION IN 6G-XR WP2 13

FIGURE 2: PLAN FOR CGE'S ENABLERS .. 14

FIGURE 3: PLAN FOR I2CAT'S ENABLERS .. 14

FIGURE 4: PLAN FOR ERI'S ENABLERS .. 15

FIGURE 5: PLAN FOR TID'S ENABLERS ... 15

FIGURE 6: PLAN FOR UOULU'S ENABLERS ... 15

FIGURE 7: EDGE IN BARCELONA, HOSTED BY I2CAT ... 21

FIGURE 8: QOD SESSION CREATION WORKFLOW .. 23

FIGURE 9: SIMPLE EDGE DISCOVERY SESSION CREATION WORKFLOW ... 24

FIGURE 10: EWBI API AND THE TWO EDGES IN THE SOUTH NODE .. 25

FIGURE 11: API WORKFLOW FOR SLICES LIST RETRIEVAL USING UDR ... 26

FIGURE 12: API WORKFLOW FOR SLICE ASSIGNMENT USING UDR ... 27

FIGURE 13: API WORKFLOW FOR QOS CHANGE .. 28

FIGURE 14: CLASS DIAGRAM OF THE NNA APPLICATION ... 33

FIGURE 15: FUNCTIONAL DIAGRAM OF 3D DIGITAL TWIN AND THE EDGE SERVICES 34

FIGURE 16: UPDATED NORTH NODE HIGH LEVEL ARCHITECTURE ... 37

FIGURE 17: IEAP DEPLOYMENT DIAGRAM .. 40

FIGURE 18: IEAP HARDWARE AND VIRTUALIZATION DIAGRAM ... 40

FIGURE 19: SERVERS HOSTING THE 6GXR MAIN CLUSTER .. 41

FIGURE 20: TOWER PC HOSTING THE INFRASTRUCTURE USED FOR THE OPEN CALLS 41

FIGURE 21: OPENSTACK HOSTING THE EDGE INFRASTRUCTURE IN BARCELONA 42

FIGURE 22: COMPUTING RESOURCES ... 42

FIGURE 23: OVERVIEW OF THE SERVICES RUNNING .. 43

FIGURE 24: CURRENT WORKLOAD .. 43

FIGURE 25: PRIVATE REPOSITORY FOR THE MEF MANAGER .. 44

FIGURE 26: CLUSTER HOSTING THE MEF MANAGER .. 45

FIGURE 27: FEDERATION MANAGEMENT METHODS ... 45

FIGURE 28: AVAILABILITY ZONE INFO SYNCH .. 46

FIGURE 29: ARTEFACT MANAGEMENT .. 46

FIGURE 30: APPLICATION ONBOARDING... 47

FIGURE 31: APPLICATION DEPLOYMENT MANAGEMENT ... 47

FIGURE 32: NEF SETUP IN THE SOUTH NODE ... 48

FIGURE 33: IMS DC DEPLOYMENT IN THE SOUTH NODE .. 49

FIGURE 34: NNA DEPLOYMENT WITH RELATED NETWORK COMPONENTS ... 50

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 8 of 84 © 2023-2025 6G-XR Consortium

FIGURE 35: 3D DIGITAL TWIN XR FAB LAB APP DEPLOYMENT IN THE LOCAL 5G EDGE SYSTEM 51

FIGURE 36: 5G MODEM CONNECTION WITH VR GLASSES .. 52

FIGURE 37: XR FAB LAB OF BABYLON.JS AND OPENVIDU CONNECTIVITY IMPLEMENTATION 52

FIGURE 38: XR FAB LAB APP PROCEDURE FOR QOSIUM MEASUREMENT VALIDATION 53

FIGURE 39: POLICY NETWORK TRAINING AND ALLOCATION TREND ... 54

FIGURE 40: THE ROLE OF NNA AND CUMUCORE IN SLICE MANAGEMENT .. 55

FIGURE 41: NORTH NODE ENERGY MEASUREMENT FRAMEWORK ... 56

FIGURE 42: OAIBOX POWER CONSUMPTION ENABLED BY NORTH NODE ENERGY MEASUREMENT
FRAMEWORK ... 57

FIGURE 43: PLANNED FEDERATION FROM IEAP GUI .. 59

FIGURE 44: ACCEPT FEDERATION FROM IEAP GUI ... 59

FIGURE 45: PROXY LOGS FOR FEDERATION ACCEPTANCE .. 59

FIGURE 46: ACCEPTED FEDERATION FROM IEAP GUI ... 59

FIGURE 47: ZONE ACCEPTANCE FROM IEAP GUI .. 60

FIGURE 48: ZONE ACCEPTANCE WORKFLOW ... 60

FIGURE 49: PROXY LOGS FOR ZONE ACCEPTANCE ... 60

FIGURE 50: ZONE ACCEPTED FROM IEAP GUI .. 60

FIGURE 51: ARTEFACT UPLOADING FROM IEAP GUI .. 61

FIGURE 52: APPLICATION ONBOARDING FROM IEAP GUI .. 61

FIGURE 53: APPLICATION ONBOARDING WORKFLOW ... 62

FIGURE 54: PROXY LOGS FOR APPLICATION ONBOARDING ... 62

FIGURE 55: APPLICATION ONBOARDING RESULT FROM IEAP GUI .. 62

FIGURE 56: APPLICATION INSTANCE DEPLOYMENT FROM IEAP GUI ... 63

FIGURE 57: PROXY LOGS FOR APPLICATION INSTANCE DEPLOYMENT .. 63

FIGURE 58: APPLICATION INSTANCE DEPLOYMENT RESULT FROM IEAP GUI .. 63

FIGURE 59: APPLICATION INSTANCE DEPLOYMENT RESULT FROM I2CAT-BARCELONA 63

FIGURE 60: REQUEST AND RESPONSE FOR QOD CREATE SESSION (I) .. 64

FIGURE 61: PROXY LOGS FOR ASSESSIONWITHQOS CREATE SUBSCRIPTION (I) 65

FIGURE 62: SLICE PROFILE INFORMATION RETRIEVING (I).. 65

FIGURE 63: REQUEST AND RESPONSE FOR SIMPLEEDGEDISCOVERY (BARCELONA) 65

FIGURE 64: REQUEST AND RESPONSE FOR SIMPLEEDGEDISCOVERY (MADRID) 66

FIGURE 65: PROXY LOGS FOR MONITORINGEVENT (BARCELONA) .. 66

FIGURE 66: PROXY LOGS FOR MONITORINGEVENT (MADRID) ... 66

FIGURE 67: REQUEST AND RESPONSE FOR QOD CREATE SESSION (II) ... 67

FIGURE 68: PROXY LOGS FOR ASSESSIONWITHQOS CREATE SUBSCRIPTION (II) 67

FIGURE 69: SLICE PROFILE INFORMATION RETRIEVING (II) ... 67

FIGURE 70: PING COMMAND FOR UE CONNECTED TO MADRID UPF .. 68

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 9 of 84 © 2023-2025 6G-XR Consortium

FIGURE 71: PING COMMAND FOR UE CONNECTED TO BARCELONA UPF .. 68

FIGURE 72: DATA COLLECTION API EXAMPLE .. 69

FIGURE 73: EXAMPLE OF IMS VMS CONNECTIVITY VALIDATION .. 70

FIGURE 74: TEST LOGS OF THE INITIATION OF PER-SLICE MEASUREMENTS IN QOSIUM 71

FIGURE 75: TEST LOGS OF FETCHING PER-SLICE DL/UL MEASUREMENT KPIS FROM QOSIUM 72

FIGURE 76: TEST LOGS OF THE TERMINATION OF PER-SLICE MEASUREMENTS IN QOSIUM 72

FIGURE 77: TEST LOGS OF CREATING AND DELETING SLICES IN CUMUCORE ... 73

FIGURE 78: CREATED SLICES VISIBLE IN CUMUCORE GUI ... 73

FIGURE 79: TEST LOGS OF THE AI/ML INTEGRATION TEST ... 74

FIGURE 80: TEST LOGS OF THE OSM INTEGRATION TEST .. 75

FIGURE 81: LOGS OF THE OVS INTEGRATION TEST... 76

FIGURE 82: QOSIUM MEASUREMENT RESULTS IN NORTH NODE PORTAL... 77

FIGURE 83: DATA EXCHANGE VALIDATION BETWEEN VTT AND UOULU ... 79

FIGURE 84: SCREENSHOT OF GRAFANA VISUALIZATION OF INTEGRATED FORECASTING APIS 80

FIGURE 85: FMI ENERGY WEATHER FORECAST 66H API VALIDATION ... 81

FIGURE 86: ELSPOT ELECTRICITY PRICING 24 AHEAD API VALIDATION ... 82

FIGURE 87: FINGRID CO2 ESTIMATES API VALIDATION ... 82

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 10 of 84 © 2023-2025 6G-XR Consortium

LIST OF TABLES

TABLE 1: IEAP RELEASE 2.1.0.0.0 FEATURES - 29/FEB/2024. ... 16

TABLE 2: IEAP RELEASE 2.2.1.0.0 FEATURES - 25/JUNE/2024.. 17

TABLE 3: IEAP RELEASE 2.3.2.0.0 FEATURES - 11/DEC/2024. .. 18

TABLE 4: 3GPP ASSESSIONSWITHQOS VERSION DISCREPANCY .. 22

TABLE 5: QOS PROFILE AND SLICE PROFILES MAPPING .. 22

TABLE 6: 3GPP MONITORINGEVENT VERSION DISCREPANCY ... 23

TABLE 7: PYTHON PACKAGES USED BY THE NNA ... 32

TABLE 8: IMS DATA CHANNEL SOLUTION FLOWS .. 69

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 11 of 84 © 2023-2025 6G-XR Consortium

ABBREVIATIONS

5GTN 5G Test Network
AF Application Function
AI Artificial Intelligence
AMF Access and Mobility Management Function
API Application Programming Interface
DL Downlink
DNN Data Network Name
GPSI Generic Public Subscription Identifier
GPU Graphic Processing Unit
GUI Graphical User Interface
ICE Interactive Connectivity Establishment
IEAP Intelligence Edge Application Platform
IMSDCS IMS Data Channel Server
IP Internet Protocol
JSON JavaScript Object Notation
KPI Key Performance Indicator
MANO NFV Management and Orchestration
MEC Multi-access Edge Computing
ML Machine Learning
MVP Minimum Viable Product
NBI Northbound Interface
NEF Network Exposure Function
NFV Network Functions Virtualization
NPN Non-Public Network
OSM Open Source MANO
OVS Open vSwitch
PCF Policy Control Function
QoD Quality on Demand
QoS Quality of Service
REST Representational State Transfer
RPC Remote Procedure Call
SBI Southbound Interface
SMF Session Management Function
SUPI Subscription Permanent Identifier
TAI Tracking Area Identity
TCP Transmission Control Protocol
UC Use Case
UDM Unified Data Manager
UDR Unified Data Repository
UE User Equipment
UL Uplink
UPF User Plane Function
URSP UE Route Selection Policy
VLAN Virtual Local Area Network
VM Virtual Machine
WSGI Web Server Gateway Interface

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 12 of 84 © 2023-2025 6G-XR Consortium

1 INTRODUCTION

1.1 OBJECTIVE OF THE DELIVERABLE

The scope of this document is to report the results of the work performed in 6G-XR WP2 to develop,
deploy and validate the integration of the enablers in the experimentation Nodes.

1.2 STRUCTURE OF THE DELIVERABLE

The deliverable is structured in four sections: (i) initial plan, (ii) development phase, (iii) deployment
phase and (iv) integration validation phase.

The initial plan contains the proposals of each of the partners to develop and integrate the enablers
described in previous D2.2 [1]. The development phase contains a report of the development work
done. As the functional description and workflows of the enablers are already described in D2.2, the
current deliverable provides some detail on when these features were developed, and the deviations
incurred from the original plan. Therefore, workflows are only described in case there are
modifications from what was detailed in D2.2. The deployment phase reports when and how the
enablers were deployed and outlines the setup of the components specifically in the
experimentation Nodes. The integration validation phase provides evidence that the enablers work
as expected and they are ready to be used for the UCs validation in WP6.

1.3 TARGET AUDIENCE OF THE DELIVERABLE

This deliverable is intended for project consortium partners, academic and research institutions, EU
Commission services, and other stakeholders with a technical background in wireless networks, in 5G
and 6G technologies, network orchestration, and Extended reality (XR) applications, particularly in
the context of system and resource optimization.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 13 of 84 © 2023-2025 6G-XR Consortium

2 INITIAL ENABLERS DEVELOPMENT AND INTEGRATION PLAN

This chapter focuses on sharing the initial plans of all partners for developing their enablers and
integrating them jointly in the project Nodes, to validate that the interaction among them works
properly before the full 6G-XR use cases validation phase. These plans were provided by partners in
March 2024 (M15).

2.1 GENERAL APPROACH

Partners in 6G-XR WP2 have followed continuous development, deployment and integration
practices for the production and validation of the identified enablers. These practices emphasize
constant testing of the performed work, to be able to evaluate early that the features behave as
expected, resulting in a more agile software lifecycle management. With this idea in mind, within the
scope of WP2, there have been three phases: (i) Enablers development, which is the phase when the
software of the enablers is built; (ii) deployment of the enablers in the experimental Nodes; and (iii)
integration validation, where the interaction among different enablers is tested to make sure they
are ready for the use cases. Each of the phases are iterative processes that increase complexity.

Figure 1 below illustrates the way of working approach. In the enablers development phase, every
enabler has been produced independently by the assigned partner. Each feature of the enabler has
been built, tested and merged into a sequence of releases. This phase happened between M15 and
M22, in time to report the details of the final enablers solution in D2.2 [1]. The deployment and
integration validation phases were carried out together, between M19 and M29. As soon as stable
releases of the enablers were produced, they were deployed at the Nodes, to confirm that the
deployment worked well and to start testing the interaction with other enablers.

Figure 1: Continuous development, deployment and integration in 6G-XR WP2

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 14 of 84 © 2023-2025 6G-XR Consortium

2.2 INITIAL TIME PLAN

This chapter gathers the high-level plans from partners involved in WP2 for developing, deploying
and integrating their enablers.

CGE shared the plan represented in Figure 2 below. In the scope of WP2, CGE developed the
following enablers as identified in 6G-XR D2.2 [1]: E1.1 Intelligent Edge Application Platform (IEAP),
E4.1 Quality on Demand (QoD) API, E4.2 Edge Discovery API, E4.3 Traffic Influence API and E5.1 East-
Westbound Interface (EWBI) on IEAP side. The development of E4.3 Traffic Influence API had to start
later than the rest because it depended on some decisions on the related CAMARA API sub-project.
The development of that one was scheduled between M21 and M24. The rest of the enablers from
CGE were planned to be deployed between M15 and M21. The deployment of the enablers at 5Tonic
in the South Node was targeted within the period M20-M23. These enablers would be ready for
validation from M22 onwards.

Figure 2: Plan for CGE's enablers

I2CAT aimed to follow the plan shown in Figure 3 below. In the scope of WP2, i2CAT developed the
following enablers: E2.1 MEF Manager and E5.1 EWBI on i2EDGE side. The plan was to develop those
enablers between M12 and M18. The integration with the other side of the South Node, the IEAP
Edge at 5Tonic would start on M19.

Figure 3: Plan for i2CAT's enablers

ERI developed Network Exposure Function (NEF) APIs named: E6.1 Service Parameter API, E6.2 UE
Location API, E6.3 QoS Session API and E6.4 Data Collection API. The plans are depicted in Figure 4
below. The development of the APIs would be done in the period M16-M21. The APIs would be
deployed between M20 and M23. From M21 there would be some APIs available for testing against
other components.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 15 of 84 © 2023-2025 6G-XR Consortium

Figure 4: Plan for ERI's enablers

TID worked on the plan shown in Figure 5 below. The planned development of E9.1 IMS Data
Channel Server (IMSDCS) innovations spanned from M10 to M19. That work progressed along with
the deployment of an IMS Core and the IMS Data Channel solution at 5Tonic, which was done by ERI,
and it was a pre-requisite to be able to deploy the final IMSDCS innovations over 5Tonic
infrastructure in M20-M23. Finally, it would be ready for validation with other components
developed in WP3 and WP6 from M24.

Figure 5: Plan for TID's enablers

UOULU followed the plan illustrated in Figure 6 below. As stated in 6G-XR D2.2 [1], UOULU worked
on the enablers: E3.1 North Node Adapter, E3.2 3D Digital Twin, E3.3 Energy Management, E3.4
Resource Optimization, E7.1 Cumucore Slice Creation and E8.1 OAIBOX. The first developments to be
started in M13 were E3.2 3D Digital Twin and E3.3 Energy Management. The last to be completed in
M22 were expected to be E3.1 North Node Adapter and, again, E3.3 Energy Management. Whenever
stable releases of the enablers were produced, they would be deployed at the North Node. This was
scheduled between M15 and M23. Then all the enablers would be validated together in the period
M21-M27.

Figure 6: Plan for UOULU's enablers

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 16 of 84 © 2023-2025 6G-XR Consortium

3 ENABLERS DEVELOPMENT PHASE

This chapter reports the development work done by each partner independently to produce their
enablers.

3.1 SOUTH NODE USER PLANE ENABLERS

This section covers the development report of the enablers needed in the South Node for UC1
Resolution Adaptation or Quality on Demand and UC2 Routing to the Best Edge (see D1.1 [2] for UCs
description).

3.1.1 E1.1 IEAP Edge orchestrator development

The IEAP (Intelligence Edge Application Platform), is the Multi-access Edge Computing (MEC) [3]
orchestrator (ETSI MEC compliant) used at 5Tonic within 6G-XR (see D2.2 [1] for details on its
functionality).

The IEAP design took as conceptual starting point a previous simplified version of a Minimum Viable
Product (MVP) MEC orchestrator by Capgemini called Ensconce, that was part of previous research
projects such as FISHY [4].

Though taking the conceptual idea from FISHY project, the IEAP was completely developed from
scratch overcoming the limitations found in that initial version. The main API for application lifecycle
management was completely renew and aligned with Open Gateway initiative by GSMA [5] and
CAMARA Linux Foundation [6] project in order enhance external exposure and simplify the
accessibility by third party application providers. Besides, it can manage the deployment of
application in multiple kind of compute infrastructure not only Virtual Machines but it is also
compatible with Docker and importantly with Kubernetes (K8s).

The IEAP has been mainly developed in the period from October 2023 to June 2024, in two main
cycles: from October 2023 to February 2024, and from March 2024 to June 2024. In January 2024 the
first intensive test validation campaign was implemented. The second and final internal validation
test campaign was performed during June 2024. After that, it was extended with fixes and new
enablers (such as APIs on Edge Discovery and Traffic Influence) in December 2024 release.

The features provided in each of the releases are listed below.

Table 1: IEAP release 2.1.0.0.0 features - 29/Feb/2024.

Feature key Description

F0001
Support for OOPG.02 NBI requirements that have been developed in IEAP as a
reference set of REST APIs.

F0002
E/WBI Authentication (oAuth2.0) – Token based authentication of federated
partners

F0003 Support for OPAG standard definition of Federation APIs

F0004 Support for edge/zone management

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 17 of 84 © 2023-2025 6G-XR Consortium

F0005 oAuth2.0 - NBI Authentication – Token based authentication of ISVs/Developers

F0006 Image vulnerability scanning

F0007 Support for LF CAMARA NBI APIs - QoD, Device Status, Location

F0008 Support for HELM packages for application orchestration

F0009
Support for orchestration of Virtual Machine(VM) type applications via KubeVirt
on Kubernetes clusters

F0010 Persistent Volume (for Containers) via CEPH FS – Shared, Exclusive

F0011 Enterprise Management (Multi-Tenancy)

F0012 Support for GPU based Containerized applications

F0013 Monitoring, Troubleshooting, Alarm

Table 2: IEAP release 2.2.1.0.0 features - 25/June/2024.

Feature key Description

F0014 Application LCM - OPAG NBI/EWBI Alignment

F0015 E/WBI Authentication (O-Auth)

F0016 Federation Planning/ Mgmt - OPAG E/WBI Alignment

F0017 Edge/ Zone Management

F0018 O-Auth - NBI Authentication

F0019 Image vulnerability scanning - OPAG NBI Alignment

F0020 CAMARA NBI APIs - QoD, Device Status, Location

F0021 K8s Application/Helm chart support,

F0022 VM application

F0023 Persistent Volume (for Containers)

F0024 OPAG E/WBI Alignment

F0025 Support for NVIDIA GPUs

F0026 Monitoring, Troubleshooting, Alarm

F0027 Container Application with multiple network – SRIOV/Multus

F0028 Support for Applications requesting huge pages

F0029
GSMA OPG.02 UNI interface – Application orchestration, discover and mobility
for client devices

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 18 of 84 © 2023-2025 6G-XR Consortium

F0030 Support for Resource reservation via ISV Users

F0031 Docker application management (Docker Compose)

F0032
Support for Ingress, E-gress and internet Network Policies for developer
application

F0033 Volume as a service and for container-as-a-Service

F0034 Support towards Containers

F0035
Enterprise with multiple heterogeneous runtimes/VIMs – Docker, Kubernetes,
VMWare

F0036 Application deployment for user define group (Label)

F0037 CLI for local edge management

F0038 Docker compose - Support for External private Repo

F0039 Capacity license enablement

Table 3: IEAP release 2.3.2.0.0 features - 11/Dec/2024.

Feature key Description

F0040 Persistent volume support for Helm, and docker apps (29 cases)

F0041 App upgrade for all application types

F0042 Multi component applications

F0043 Docker and helm configuration management.

F0044 Docker compose pull from App developers external repository

F0045 Docker Swarm

F0046 Metrics reporting to AWS Cloudwatch

F0047 Alarm/Event Notification to AWS SNS

F0048 DNS based Service Discovery for applications

F0049 Application config management

F0050 Extended roles with reduce scope

F0051 Adaptation of Edge/Tenant

F0052 Run time Cluster manager reduce scope - Infra as a service

F0053 Docker/VM Start and Stop

F0054 Lightweight deployment of IEAP, Co-Hosting of Central and Edge

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 19 of 84 © 2023-2025 6G-XR Consortium

F0055 Integration of IEAP (KeyCloak) with external LDAP

F0056 Portainer to SDK movement - Support low resource Runtimes (Docker based)

F0057 Automate certificate life-cycle management at IEAP Central and Edge

F0058
Volume as a service to be extended to dedicated cluster - Swarm and Docker
host

F0059 Syslog support for upstream K8S, K3S

F0060 Support shared Runtimes - Docker node and docker swarm

F0061 Support for GPU - vGpu

F0062 Improvement for Notification information to make it more usable

F0063 Integration of Central/Edge certificate management with PKI(s) - EJBCA

F0064 CAMARA API Simple Edge Discovery

F0065
Application configuration management (Modify application configuration
workflow as per SE approach)

F0066
File and Image management via EMP modules (Use SE modules for file and
image management)

F0067 Support for ARM runtimes

F0068 Combined minimum deployment (Align with SE deployment approach)

F0069
API Gateway for securing/rate-limiting external APIs exposed by IEAP Central
and Edge

F0070 CAMARA API Traffic Influence

3.1.2 E2.1 Barcelona Edge orchestrator development

The Barcelona Edge infrastructure has been finalized and is now operational for validation purposes.
The final setup includes integrated computing and networking resources to support a wide range of
applications and experiments.

3.1.2.1 Computing Resources

The infrastructure's computing component comprises multiple servers organized into distinct
Kubernetes clusters. These clusters dynamically allocate resources based on application demands,
including CPU, memory, disk capacity, and GPU support. Kubernetes nodes run either on virtual
machines managed by OpenStack or directly on bare-metal servers—such as multimedia desktop
towers—depending on performance requirements.

The i2CAT EDGE node operates within an OpenStack-managed cluster. In this environment, a
dedicated tenant has been provisioned, allocating all resources to three virtual machines (VMs): one
serving as the Kubernetes (K8S) master and two as K8S worker nodes.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 20 of 84 © 2023-2025 6G-XR Consortium

For GPU-intensive workloads, the clusters leverage virtualized GPU resources through the NVIDIA
GPU Operator. This approach enables efficient GPU sharing across multiple services, optimizing
resource utilization while ensuring high-performance computing capabilities.

3.1.2.2 Networking Resources

The Barcelona Edge is connected to a dedicated VLAN within REDIRIS1, the Spanish academic and
research network that provides advanced communication services for universities and research
institutions. This connection facilitates seamless interconnection between the Barcelona Edge,
hosted at i2CAT, and the Madrid Edge, hosted at 5TONIC. This network setup ensures robust, low-
latency communication essential for distributed edge applications.

Figure 7 presents a high-level overview of the edge computing infrastructure deployed in Barcelona.
This setup comprises two distinct physical machines: an edge server and a tower PC (MIA Tower3).
The edge server's resources are virtualized and managed through OpenStack, primarily allocating
resources to three virtual machines (VMs). These VMs function as nodes within a Kubernetes (K8s)
cluster, with one serving as the master node and the remaining two as worker nodes—one of which
is equipped with GPU capabilities. The green rectangle inside the cluster represents the internal
virtual network, used for node communication. Additionally, a fourth VM hosts a network function,
the Congestion Detection Function (CDF).

MIA Tower3 operates an independent, all-in-one bare-metal Kubernetes deployment. The entire
infrastructure is orchestrated by i2CAT’s edge orchestrator, i2EDGE, which resides in the cloud. In the
context of the 6G-XR project, interactions with i2EDGE are exclusively handled by the MEF Manager,
also deployed in the cloud.

1 https://www.rediris.es/

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 21 of 84 © 2023-2025 6G-XR Consortium

Figure 7: Edge in Barcelona, hosted by i2CAT

3.1.3 E4.1 QoD API development

The Quality on demand (QoD) API provides the capability of setting the quality for a flow within an
access network connection and gets a notification in case the network cannot fulfil it. Further details
on the functionality, methods and workflows were provided in D2.2 [1].

The development of this API has been realized in alignment with CAMARA Linux Foundation version
0.9.0, in which Capgemini is a contributor. The development period as part of the 6G-XR
infrastructure has taken place from April 2024 to July 2024 (see feature F0007 in Table 1).

Among the methods already described in D2.2 the ones implemented at IEAP side are the following:

• POST /qod/v0/sessions

• GET /qod/v0/sessions/{sessionId}

• DELETE /qod/v0/sessions/{sessionId}

Due to the flow requirements for UCs, only the first POST method was found to be needed, the other
methods mentioned above were deemed unnecessary.

Interaction with the NEF was done through the AsSessionsWithQoS 3GPP API. More specifically,
calling the following API method:

• POST /3gpp-as-session-with-qos/v1/AS/subscriptions

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 22 of 84 © 2023-2025 6G-XR Consortium

An important consideration to take into account is that there is a difference between the 3GPP API
request made from the IEAP and the request expected by the NEF, as illustrated in Table 4.

Table 4: 3GPP AsSessionsWithQoS version discrepancy

API IEAP Version NEF Version

AsSessionsWithQoS 1.2.0 1.1.2

Additionally, the QoS profile naming convention in CAMARA differs from the slice profile names
defined in 5Tonic’s NEF. The CAMARA QoS profiles represent four different QoS requirement levels
that might be demanded by a service. The NEF slice profile names are the identifiers of the different
slices provisioned in the 5G network, which will be tied to certain values of 5G QoS Identifier (5QI)
and Data Network Name (DNN). Table 5 below shows the mapping among CAMARA QoS profiles and
5Tonic’s NEF slice profiles. The NEF slice profiles named “-low” are defined with a Non-Guaranteed
Bit Rate (NGBR) 5QI, while the ones named “-high” are defined with A Guaranteed Bit Rate (GBR). In
conclusion, depending on the QoS profiles selected in CAMARA, the user traffic in the 5G network
will be handled with a different QoS.

Table 5: QoS profile and slice profiles mapping

IEAP QoS profiles NEF QoS slice profiles

QOS_E madrid-low

QOS_S barcelona-low

QOS_M madrid-high

QOS_L barcelona-high

Henceforth, it was decided that proxy components would be needed in-between to: (i) handle
mappings that would format the fields from CAMARA standard to NEF implementation, and (ii) to
adapt HTTP parameters to facilitate integration between both systems. The full communication
workflow is depicted in Figure 8.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 23 of 84 © 2023-2025 6G-XR Consortium

Figure 8: QoD session creation workflow

3.1.4 E4.2 Simple Edge Discovery API development

The edge discovery API enables retrieving a list of available and suitable edge platforms according to
the requirements set for each application and as close as possible to the User Equipment (UE)
location. Further details on the functionality, methods and workflows were provided in D2.2 [1].

The development of this API has been realized in alignment with CAMARA Linux Foundation of
Simple Edge Discovery API version 0.9.3 in which Capgemini is contributor. The development period
as part of the 6G-XR infrastructure has taken place from May 2024 to September 2024 (see feature
F0064 in Table 3).

The Simple Edge Discovery API provides the following method which retrieves the closest edge to the
UE as explained above:

• GET /mec-platforms: Returns the names of the available Edge Cloud Zones that are the
closest to the user device identified in the request.

The API expects as input parameters information to facilitate the UE identification such as its IPv4
address and the Phone Number. Subsequently, the IEAP sends this information—along with
additional parameters—to the NEF, which responds with data regarding the User Equipment (UE)
location. The most relevant piece of information returned is the Tracking Area Code (TAC), as it is
used by the IEAP to identify the nearest edge location.

For establishing the communication between IEAP and NEF, the 3GPP API MonitoringEvent was
utilized, specifically the following HTTP method:

• POST /3gpp-monitoring-event/v1/{scsAsId}/subscriptions

Nevertheless, for the same reason explained in above - a version mismatch between requests made
and expected for by IEAP and NEF respectively - a proxy was necessary for the communication. This
version discrepancy is shown in Table 6. The full workflow is also shown in Figure 9.

Table 6: 3GPP MonitoringEvent version discrepancy

API IEAP Version NEF Version

MonitoringEvent 1.2.1 1.0.17.0

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 24 of 84 © 2023-2025 6G-XR Consortium

Figure 9: Simple Edge Discovery session creation workflow

3.1.5 E4.3 Traffic Influence API development

The Traffic Influence (TI) API provides the capability for the application providers to request the
minimal latency in a specific geographical area. This is done by leveraging local instances of the
application deployed at the Edge and influencing the traffic routing from the UE towards the edge
instance of the application. Initial list of methods and first version of the workflow was provided in
D2.2 [1].

The development of this API has been realized in alignment with CAMARA Linux Foundation version
in which Capgemini is contributor. The development period as part of the 6G-XR infrastructure has
taken place from October 2024 to December 2024 (see feature F0070 in Table 3).

Despite TI API having been developed and being fully functional at IEAP side, no tests could be
conducted in the context of 6G-XR as 3GPP Traffic Influence API is not available at NEF side.
Nevertheless, leveraging QoD API and AsSessionsWithQoS 3GPP API already explained in section
3.1.3, The traffic was successfully influenced by changing the UPF to which the different UEs were
connected. Further information about the validation is available in section 5.1.4.

3.1.6 E5.1 Edge Federation development

The 6G-XR project has decided to federate the two edge infrastructures in the South Node by
adopting the GSMA Operator Platform Group (OPG) standard for the East-West Bound Interface. To
achieve this, the MEF (MEC Federator Manager) was implemented as the key component for
interfacing with other operators’ platforms via the East-West Bound Interface.

Development began by ensuring that i2EDGE supported all the required functionalities for its
designated roles, a process initiated in April 2024. In parallel, the development team worked on the
MEF API, which implements the EWBI to expose the functionalities required by the partner operator.
The MEF API implementation was completed in May 2024, followed by internal validation of all
components in June 2024.

The MEF is responsible for the following key functions:

• Managing federations between operators.

• Synchronizing information on shared resources with partner operators.

• Exposing and monitoring edge cloud resources to other partner operators.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 25 of 84 © 2023-2025 6G-XR Consortium

• Facilitating the transfer of application artifacts (e.g., container images) and generating the

necessary metadata at partner operators.

• Handling the lifecycle management of instantiated applications.

The MEF Federator interacts with the MEC platform, which fulfils the roles of Capabilities Exposure
and Service Resource Management. Within the Barcelona EDGE infrastructure, i2EDGE serves as the
MEC Platform Manager, orchestrating Kubernetes clusters and overseeing the lifecycle of deployed
applications.

In the context of 6G-XR, the external interface at the Barcelona Edge—accessible to partner
operators—is exclusively provided by the MEF. The i2EDGE interface remains strictly internal,
facilitating interaction with the MEF, which handles all external communications.

The following diagram (Figure 10) illustrates the two EDGE locations in the South Node, Madrid and
Barcelona, sharing resources via federation through the EWBI.

Figure 10: EWBI API and the two edges in the South Node

i2CAT led the implementation of the MEF. To validate the MEF component, a dummy operator was
developed by i2CAT to test and verify the API functionality. The validation effort took place during
the month of July 2024. This approach allowed for streamlining the appropriate method calls, which
significantly facilitated the integration with the Edge in Madrid.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 26 of 84 © 2023-2025 6G-XR Consortium

It is worth noting that the GSMA’s East-West Bound Interface (EWBI) specification is an evolving
standard. While future versions may introduce some changes, the core functionality appears to be
stable, and no significant modifications are anticipated based on the current version.

3.1.7 E6.1 Service Parameter API development

This enabler is aimed to assign the most appropriate slice to the end users. On a high level, the
features required are the retrieval of the list of available slices in a non-public network (NPN) and the
assignment of an end user to a slice.

The development of this enabler was impacted by a delay in the deployment of a Policy Control
Function (PCF) in 5Tonic’s 5G Core, which was not available before December 2024 (M24). A solution
which was not described in D2.2 [1] was implemented. This solution meant two main changes: First,
the southbound interface (SBI) had to perform the requested actions on the Unified Data Repository
(UDR). Second, the lack of a PCF also implied the absence of the UE Route Selection Policy (URSP)
feature. Without this feature, it is not possible to push a change of Data Network Name (DNN) to a
User Equipment (UE) from the network. Thus, it was decided to use four different slices in the
network, all with the same DNN, and the selection of UPF would be done according to the slice
identifier. As a result, the assignment of slice to a particular end user would be done via the NBI API
POST /subscriptions/{subscriptionId}/profile/{profileId} or POST /3gpp-as-session-with-qos/v1/
{scsAsId}/subscriptions.

The workflow for getting the list of slices available in the network using UDR is illustrated in Figure
11.

Figure 11: API workflow for slices list retrieval using UDR

The Application Function (AF), which is the API client, will trigger the slices list retrieval available in a
specific NPN by calling the GET /npn/{npnid}/slices method. Then the NEF propagates this request
southbound by sending a GET profiles/udm/udmSliceProfiles/{udmSliceProfileId}. The field
udmSliceProfileId is equal to “physical_twins.{npnId}.slice-profile}”. Finally, the HTTP 200 respond is
sent to NEF and to the API client with the list of available sliceIds.

Figure 12 represents the workflow for assigning a slice to a specific end user.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 27 of 84 © 2023-2025 6G-XR Consortium

Figure 12: API workflow for slice assignment using UDR

First, the AF sends a NEF Service Parameter API request (POST /3gpp-as-session-with-qos/v1/
{scsAsId}/ subscriptions or POST /subscriptions/{subscriptionId}/profile/{profileId}) to select a specific
slice profile from the available slice profiles for a user, providing the UE IP or the Generic Public
Subscription Identifier (GPSI) and the selected slice profile identifier. Then the NEF forms a PATCH
/users/{userId}/udm/udmSubscription request using the GPSI for the userId variable and including
the obtained profileId in the body to identify the slice. The UDR will update the assignment, and if
successful, will send a HTTP 204 response to the NEF and the API client.

Regarding the SBI, an action was listed in the development backlog in May 2024 to find and test
methods to interact with the Unified Data Manager (UDM) and the Unified Data Repository (UDR) to
create or modify slicing profiles. As a result, during May the methods to see all UDM profiles
registered, to create a UDM slice profile, to see a user slice profile in UDM and to set a UDM slice
profile to a user were designed. These methods were tested in the following days and the item was
marked as done in June.

The item in the backlog for implementing the retrieval of the list of available slices in a specific NPN
(GET /npn/{npnId}/slices) was assigned to a developer in July 2024. This task was completed in
October.

A task for building the SBI API to update a slice profile in the UDR (POST /subscriptions/
{subscriptionId}/profile/{profileId}) was created in the development backlog in August 2024. The
feature was developed and tested in October.

The tasks allowing to use this enabler with UDR were completed around two months later than
originally planned, but this fact did not compromise the success of the project thanks to the buffer
time allocated in the plan.

3.1.8 E6.2 UE Location API development

This API allows to obtain information about where a User Equipment (UE) is located. It is useful for
being able to monitor the cell that is providing the service to the UE or to assign the closest User
Plane Function (UPF) to the end user. More details on the API can be obtained in D2.2 [1]. The notes
made in the activity backlog by the development team are reported below.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 28 of 84 © 2023-2025 6G-XR Consortium

In May 2024 the item to obtain the cell where a UE is located via Access and Mobility Management
Function (AMF) providing the UE IP address as input was created in the development backlog. During
May the API was defined, and the task was considered completed in July.

In June 2024 the requirement was registered in the backlog to obtain via Session Management
Function (SMF) the cell and Tracking Area Identity (TAI) of a UE providing its IP address as input. In
July the solution was designed to retrieve from the SMF the GPSI or Mobile Subscriber Integrated
Directory Number (MSISDN) from an IP address, and to retrieve the cell and TAI provided an IMSI. In
August, this feature was integrated in the exposure function.

During August 2024 a task was defined and implemented to extend the API to obtain the cell where a
UE is located via SMF providing GPSI as input.

The development of these features was completed 2 months later than the original plan but had no
impact on the project because of the existing buffer time in the plan.

3.1.9 E6.3 QoS Session API development

The NEF QoS Session API facilitates the modification of the QoS value of the user plane traffic
generated by a UE, in order to adapt to the service needs. There was a modification from the
workflow described in D2.2 [1]. Instead of the method PUT /subscriptions/{subscriptionId}/qos
between CAMARA and NEF, it has been replaced with POST /subscriptions/{subscriptionId}/profile/
{profileId}. The final workflow is depicted in Figure 13.

Figure 13: API workflow for QoS change

Initially, the AF initiates a CAMARA QoD API request (POST /sessions) to request a QoS change of an
existing device connection, specifying the desired QoS Profile and other parameters like the identifier
of the device (IPv4 address or Phone number) and the identifier of the application server. Then, the
CAMARA QoD calls NEF by means of QoS Session API (POST /3gpp-as-session-with-qos/v1/{scsAsId}/
subscriptions or POST /subscriptions/{subscriptionId}/profile/{profileId}) to modify device connection
QoS, providing the UE IP or the GPSI and the requested QoS Profile. Next, Southbound in the
network, the NEF makes a request to UDR, to use the received QoS Profile, that is mapped to a set of

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 29 of 84 © 2023-2025 6G-XR Consortium

QoS parameters, for the requested user data flow. Then, the UDR propagates a request to the SMF,
which initiates the PDU session modification, and acknowledges the NEF with a 201 response. Then,
the NEF returns HTTP response code 201 with the information of the created subscription to
CAMARA and the CAMARA QoD creates a QoS session for the QoS change request and stores the
session information. The status of the QoS session is set to REQUESTED, which indicates that QoS
change has been requested by creating a session. Finally, the CAMARA QoD returns HTTP response
code 201 with the information of the created QoS session (including session ID and the REQUESTED
status) to the AF.

The methods involved here are the same as already referred to in section 3.1.7 Service Parameter
API development. So, as it was mentioned, the methods to interact with the UDM and UDR to create
or modify slicing profiles were tested and validated by June 2024, and the NEF NBI API to update a
slice profile was considered completed in October.

The enabler development was completed less than a month later than the original plan.

3.1.10 E6.4 Data Collection API development

This enabler is devoted to providing network metrics to an API client. Those metrics can be used later
for example for detecting congestion. More information about the API detailed in D2.2 [1]. The notes
made in the activity backlog by the development team are reported below.

In May 2024 the request to develop an API to fetch Key Performance Indicators (KPIs) in the
exposure function was noted in the backlog. It is required that different KPIs can be stored by cellId
or by UE IP. It was completed in May.

The throughput per UE counters (UEUplinkThroughput, UEDownlinkThroughput) were introduced in
the backlog in May 2024. Code changes were committed in September 2024.

Also in May 2024, a task was created for developing the throughput per cell counters
(RanDownlinkThroughput, RanUplinkThroughput). The implemented code was committed in
September 2024.

In May 2024 a task was noted to develop a metric to calculate the number of active users on a cell
(ActiveUsersDL, ActiveUsersUL). Completed in September 2024.

In July 2024 the requirement to include the following KPIs proposed by i2CAT was noted in the
development backlog:

• HARQ transmission counters:

pmMacHarqDlAck16Qam - Total number of successful downlink HARQ transmissions

using 16-QAM modulation.

pmMacHarqDlAck64Qam - Total number of successful downlink HARQ transmissions

using 64-QAM modulation.

pmMacHarqDlAck256Qam - Total number of successful downlink HARQ transmissions

using 256-QAM modulation.

pmMacHarqDlAckQpsk - Total number of successful downlink HARQ transmissions using

QPSK modulation.

pmMacHarqUlAck16Qam - Total number of successful HARQ transmissions in uplink

using 16-QAM modulation.

pmMacHarqUlAck64Qam - Total number of successful HARQ transmissions in uplink

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 30 of 84 © 2023-2025 6G-XR Consortium

using 64-QAM modulation.

pmMacHarqUlAck256Qam - Total number of successful HARQ transmissions with 256-

QAM uplink.

pmMacHarqUlAckQpsk - Total number of successful HARQ transmissions in uplink using

QPSK modulation.

• Distribution of MCS counters:

pmRadioPdschTable1McsDistr - Distribution of MCS used for PDSCH transmissions where

MCS index table 1 is applied and UE instances are enabled with up to 64-QAM.

pmRadioPdschTable2McsDistr - Distribution of MCS used for PDSCH transmissions where

MCS index table 2 is applied and UE instances are enabled with up to 256-QAM.

pmRadioPdschTable3McsDistr - Distribution of MCS used for PDSCH transmissions where

MCS index Table 3 is applied and UE instances are enabled.

pmRadioPuschTable1McsDistr - Distribution of MCS used for PUSCH transmissions where

MCS index table 1 is applied and UE instances are enabled with up to 64-QAM.

pmRadioPuschTable2McsDistr - Distribution of MCS used for PUSCH transmissions where

MCS index table 2 is applied and UE instances are enabled with up to 256-QAM.

pmRadioPuschTable3McsDistr - Distribution of MCS used for PUSCH transmissions where

MCS index table 3 is applied and UE instances are enabled.

Ericsson proposed to include the following counters:

• RBSym utilization:

pmMacRBSymUtilDlDistr - Distribution of utilization for downlink resource block symbols

averaged over 1 second.

pmMacRBSymUtilUlDistr - Distribution of utilization for uplink resource block symbols

averaged over 1 second.

In September 2024 the RBSym utilization counters were implemented in the exposure API with
names UtilizationDistributionDL and UtilizationDistributionUL. In September 2024 the HARQ and MCS
counters were included in the exposure.

This enabler was completed two months later than expected in the original plan, but did not impact
the overall progress of the project as it was in line with the targeted time to have all enablers ready
and the deployment and validation phases were shortened.

Some bug corrections were triggered and solved during November 2024: (i) to set KPIs to N/A if there
is any internal error in the retrieval of the data, (ii) to set the KPI called TrafficKpiUeData to N/A
whenever there is no targetUe input provided and (iii) to set the KPI called TrafficKpiRanData if there
is no cellID input provided.

3.2 SOUTH NODE CONTROL PLANE ENABLERS

This section provides details on the development efforts done for the enablers of UC3 Control plane
innovations in the South Node (see UC description in D1.1 [2]).

3.2.1 E9.1 IMS Data Channel Server development

The IMS Data Channel Server is described in D2.2 [1].

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 31 of 84 © 2023-2025 6G-XR Consortium

For the development phase of the IMSDC server, the work plan was divided into two phases. The
initial development was carried out in the IMS core of the Ericsson lab in Sweden because the 5Tonic
lab was not available to start the first tests. The idea was to advance in parallel with the PoC while
the 5Tonic lab continued its deployment. Once the deployment was completed at 5Tonic, the only
thing that would have to be done was to migrate from the Sweden servers to the new ones in 5Tonic
(IMS Core) hosted in Azure in Madrid (IMSDC server).

Regarding architecture and signaling, connectivity between the different components (Ericsson IMS
Core in Sweden lab, DCS in Azure, and Matsuko servers in Azure) were completed. The information
and message exchange between the DCS, the devices and the application servers are described in
D2.2 [1].

Firstly, the service number (which is the number the client would dial to start the service) was
activated in Ericsson Sweden lab DCS, allowing clients to access it via VoWiFi. But in the case of
5Tonic lab, the VoNR alternative has been enabled. Although VoNR offers more limited range, this
technology allows a more stable and efficient connection in areas with 5G coverage.

Once the connection between all the elements involved was established, efforts were focused on
optimizing connectivity and data transmission performance through the end-to-end Data Channel
connection to ensure that the DCS enabler provides the necessary capacity and meets the
requirements to provide a third-party application like MATSUKO with the desired final user
experience.

These efforts include optimizations in the connectivity and in the performance of the
WebRTC/WebGL application. For example, there was a configuration in the ICE (Interactive
Connectivity Establishment) candidate policies parameters such as “bundle policy” to control how
different media streams (audio, video, data) are multiplexed or not on a single connection.
Additionally, file compressions with Gzip and Brotli were used to reduce the file size from 62 MB to
10 MB and to improve data transmission reducing bandwidth usage and optimizing the application's
overall performance in different environments.

Finally, a significant issue was detected in the initial testing because the current WebRTC standard
implementation shows a 256 kB limitation for data transmission (In the case of MATSUKO's
application, a frame was approximately 5 MB in size). The most effective solution was to split the
data into 65.000-byte chunks, using HTTP to control the order of the chunks, and adding additional
headers to facilitate reassembly on the client.

3.3 NORTH NODE 3D DIGITAL TWIN ENABLERS

This section reports the work done on the enablers for UC4 Collaborative 3D Digital Twin-like
Environment in the North Node (see D1.1 [2]).

3.3.1 E3.1 North Node adapter development

The North Node Adapter (NNA) is described in D2.2 [1] and so far, the NNA development work has
been carried out as described in the D2.2 document.

The NNA has been implemented using the Python programming language and runs on a Linux-based
virtual machine under Supervisor, a process control system that allows its users to monitor and
control several processes. Python was selected as the development language for its simple syntax
and availability of a wide range of useful software packages.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 32 of 84 © 2023-2025 6G-XR Consortium

The Python packages and their versions used by the NNA are listed in Table 7.

Table 7: Python packages used by the NNA

Python package Version

Flask [7] [7] 3.0.3

Waitress [8] [8] 3.0.0

Requests [9] [9] 2.32.3

The Flask package is used for implementing a REST API to be called by the North Node Web portal
(for starting and stopping experiments and getting the status of ongoing experiments). Waitress, in
turn, is a Web Server Gateway Interface (WSGI) server, which is used to run the NNA’s Flask-based
REST API on the Linux server. Waitress is a production-quality pure-Python piece of software, which
runs in one process and uses several thread workers in its operation. Finally, Requests is a software
library, which the NNA uses to make REST queries to other NNA components (Qosium, AI/ML, OSM,
and Cumucore). The REST API provided by the NNA was implemented in M22.

The NNA application is implemented using object-oriented design, which consists of several classes.
The class structure of the NNA application is depicted in Figure 14. The main class is Experiment,
which contains the logic of an experiment and provides an API for FlaskApp for controlling the
experiment (starting, stopping, and getting the status of the experiment). The Experiment class was
implemented in M24 of the project.

FlaskApp is a Flask application, which contains four decorated functions. These functions constitute a
REST API for the North Node web portal. The FlaskApp along with the REST API was implemented
early in the project, in M22. The REST API has been described in detail in D2.2 [1].

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 33 of 84 © 2023-2025 6G-XR Consortium

Figure 14: Class diagram of the NNA application

Experiment uses threading to run the logic of an experiment, which means the inner variables of the
Experiment class are protected with mutexes, i.e. Python locks. There is one lock for status variables
and one lock for the thread variable inside the Experiment class. In theory, there could be several
Experiment classes (i.e. several experiments run simultaneously) managed by the FlaskApp class, but
for the sake of simplicity in our implementation, only one static Experiment instance is created and
used.

The Experiment class has 5 aggregated classes with their own responsibilities in the application logic.
The classes are Qosium, Ai, Cumucore, Osm, and Ovs.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 34 of 84 © 2023-2025 6G-XR Consortium

The Qosium class is responsible for managing the actual measurements carried out in an experiment
and for providing measured DL/UL KPIs (per slice) for the Experiment class. The Qosium class
interacts with Qosium measurement system (Storage) through a REST API. This class was
implemented in M22.

The Cumucore class was implemented next in M23. It is responsible for setting up and tearing down
slices in the beginning and end of an experiment according to the NNA configuration.

Next, the Ai class was finished in M23. The Ai class interacts with the AI/ML component described in
detail in section 3.3.3 and is responsible for feeding KPI data from Qosium to the AI/ML component
and getting per slice allocation back in response.

The Osm class handles instantiation of virtual machines and installation of applications in them when
an experiment is started. This class interacts with Open-Source Mano (OSM) component through a
REST API. It was implemented in M24.

Finally, the Ovs class was implemented last in M26. The Ovs class is responsible for interacting with
Open vSwitch (OvS), which has all Cumucore UPFs connected and manages throughput on N3 and N6
interfaces. The Ovs class sets the DL/UL ingress rates according to the allocation decision from the
AI/ML component using JSON-RPC-formatted messages to the switch.

3.3.2 E3.2 3D Digital Twin development

The 3D Digital Twin system has been developed as planned, utilizing the North Node Adapter API
interface as the Edge service XR application within the Cumucore local 5G network, and is organized
into the following functional blocks as shown in Figure 15.

Figure 15: functional diagram of 3D digital twin and the Edge services

• 5G System Connectivity:
o The 5G system connects the local edge services, the XR Fab Lab facility, and XR Fab

Lab users.
o Individual slices are allocated to each user within the 5G radio network to ensure an

adequate quality of service.

• XR Fab Lab Application:

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 35 of 84 © 2023-2025 6G-XR Consortium

o The XR Fab Lab application is hosted on the edge service, delivering and operating XR
functionalities over the local 5G radio system.

o XR Fab Lab users can communicate with one another via VR glasses while remotely
controlling the 3D printer in the Fab Lab Facility.

• Network KPI Measurement:
o Quality of Service and Network KPIs are measured on the XR user side within the 5G

Radio.
o The collected measurement data are sent and stored on the edge service storage.

• Edge Service Policy Network:
o Within the edge service, a policy network monitors the traffic of the stored data. It

controls the 5G network slice via the North Node Adapter to enhance XR service
performance.

• 5G Cumucore Adaptation:
o The 5G Cumucore adapts the slices proposed by the policy network function in the

edge services. The policy network controls the slices on Cumucore optimizing the 5G
radio network performance dynamically based on traffic conditions.

The implementation of this 3D Digital Twin use case, incorporating an AI/ML-based Policy Network
and 5G slicing, begins with establishing connectivity for all 5G devices under the Cumucore 5G
system in M22. QoS and KPI measurements on the 5G network were configured using Qosium Probe
and Qosium Storage during M23–M24, integrated with the Edge services of the Digital Twin
application and the AI/ML-based Policy Network. In M24–M25, end-to-end verification with VR
glasses was conducted, utilizing the NNA’s REST API to orchestrate the edge services and manage 5G
slices.

3.3.3 E3.4 Resource Optimization development

The AI-driven resource optimization component is developed to provide real-time, intelligent
network slice resource allocation based on dynamic network KPIs. As described in D2.2 [1], this
component plays a critical role in enhancing the performance and responsiveness of network slicing
by enabling data-driven decisions that adapt to the current state of the network.

In December 2024, the development of the resource optimization model was tightly integrated with
the North Node Adapter (NNA), which serves as the gateway for real-time network telemetry. The AI
module receives KPIs from the NNA via a REST API, processes them into a state vector, and returns
optimal allocation weights for each network slice.

During the development phase, it became evident that static rule-based resource allocation was not
sufficient to meet the responsiveness and adaptability required by the project use cases. Thus, the
reinforcement learning approach was selected to enable adaptive decision-making based on real-
time observations. The training of the AI model was initially conducted in a simulated environment
during January 2025, using synthetic KPI data, and the model was later exported and deployed in a
virtualized environment in March 2025 after the training.

The AI model is encapsulated within a Virtual Machine that includes:

• The trained PyTorch model

• The Flask-based REST API interface

• Model inference logic

• Required runtime dependencies

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 36 of 84 © 2023-2025 6G-XR Consortium

This packaging ensures a modular deployment that is platform-agnostic and can be easily integrated
with the existing 5GTN infrastructure.

The API exposed by the resource optimization module includes an /allocate_resource endpoint,
which receives network state and KPI information in JSON format and returns resource allocation
decisions. The allocation results are typically expressed as proportional weights for each slice (e.g.,
slice1: 0.6, slice2: 0.4) that guide the actual enforcement of resources at the data plane level.

3.3.4 E7.1 Cumucore Slice Management API development

Cumucore provides a REST API for managing network slicing. Using the Network Slice Management
API the user can define slice sizes, quality parameters and traffic rules for each slice. As described in
D2.2 [1], the Cumucore slice management API was supposed to be used in the 5GTN facility for
dynamic slice management by the NNA.

During our development, we found out that the Cumucore REST API is not able to handle dynamic
network parameter management. Therefore, we tried a UPF-based solution for allowing different
throughput capacities for slices. In this approach (tried around M22), we intended to use several pre-
configured UPFs with different throughput capacities: whenever a slice needed a higher or lower
throughput, the NNA would assign a different UPF with higher or lower capacity to the slice on-the-
fly. The process of assigning a new UPF to a slice is as follows:

1. Remove the current UPF assignment to the slice via the REST API
2. Attach new UPF with different configured throughput to the slice via the REST API
3. Configure a new static IP address from the new UPF’s pool to UE via the REST API
4. Manually re-attach the UE to the network to get the configured static IP address as part of

the PDU session establishment process

In this UPF-based solution, we configured each UPF with an IP address pool which means that UE
would get a static IP address when a slice was assigned to different UPF. The problem with this
approach was that for the UE to get a new IP address (from the new UPF’s pool) a new PDU session
establishment is needed. This means that every time we assign a UPF to a slice, the UE must
disconnect and re-attach to the network manually. We found that this solution does not work for the
project use cases as the management of slices and their throughputs must be as automatic and
programmatic as possible.

Therefore, Cumucore is not used for dynamically adjusting slice parameters as it is not supported by
the Cumucore product. We still use Cumucore as the core network in our use case (responsible for
creating and deleting slices, and managing UEs and UPFs), but dynamic resource allocation is
enforced using Open vSwitch (OvS), which has N3 and N6 interfaces connected. To achieve dynamic
resource allocation based on decisions from AI/ML, we adjust ingress policy rates on the N3 and N6
interfaces on-the-fly at the switch. This OvS-based method was implemented and tested in M24 of
the project.

3.4 NORTH NODE ENERGY FRAMEWORK ENABLERS

This section contains the development work done on the network enablers for UC5 Energy
Measurement Framework for Energy Sustainability in the North Node (see D1.1 [2]).

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 37 of 84 © 2023-2025 6G-XR Consortium

3.4.1 E3.3 Energy Management development

The North Node energy measurement framework, described in D2.2 [1], has been implemented, with
the integration phase now complete. The developed features inside the energy measurements
framework include real-time data collection of the production side (renewables), consumption side
(open source and commercial gNB sites) as well as the storage side (Battery Energy Storage System,
BESS), including real-time inverter data, solar chargers, external meters and on-site sensors data and
energy consumption of various components within the E2E data path, as shown in Figure 16.

Figure 16: Updated North Node High level architecture

These datasets lay the foundation for developing energy budgeting, which aids in control and power-
saving measures for experimentation research and will be reported in D5.2. Key developments of
features thus far from the perspective of energy management as an enabler and E2E energy
efficiency include:

• Almost real-time electricity metering system covers the whole E2E-system was developed in
May 2024. It now includes Netio Powerbox and Carlo-Gavazzi, EM111 and EM511 energy
analyzers.

• Nokia OpenEdge Blade server was deployed as a central controller in March 2024 for storing
and managing data orchestration within the energy measurement framework to enable
bridge connection between North Node gNB sites for orchestration, data exchange, and
power saving measures.

• The deployment of forecasting APIs inside the central controller to external data services
such as FMI (Finnish Meteorological Institute) energy weather forecast for the next 66 hours,
ELSPOT hourly electricity spot pricing for the next 24 hours, and real time CO2 emission
estimates to grid intake by Fingrid Open data (absolute gCO2/procured kWh’s). This task was
completed in May 2024.

• Real-time monitoring of the collected data using a central database was deployed using
Grafana panels. Energy budgeting for the next 24 hours was developed to assist and provide
control functionalities for the selection of the optimal parameters for validation of the KPIs
provided in D5.1 [10] and will be reported in D5.2.

• The deployment of the Mosquitto Message Queuing Telemetry Transport (MQTT) broker
inside the central controller enables publish/subscribe (pub/sub) data exchange, establishing
a bridge connection between the North Node gNB sites. The forecasting APIs are accessible

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 38 of 84 © 2023-2025 6G-XR Consortium

to each 5GTN network component, allowing them to subscribe for control and assistance in
selecting either full power or power-saving modes based on RAN configurations.

The development of the features phase has been completed both from UOULU and VTT sites.
Additionally, the North Node energy measurement framework has been implemented for validation
of KPIs and the sustainability experimentation framework since January 2025. The real-time data
collection and the historic data sets are now available at the North Node side for validation and
testing purposes. The only change from the proposed architecture is the introduction of open source
5G environment OAIBOX at UOULU site instead of using a commercial base station.

3.4.2 E8.1 OAIBOX development

As described in D2.2 [1], the OAIBOX will serve as an enabler within the 5GTN facility for the energy
measurement framework, acting as an open source 5G environment for sustainability
experimentation. The integration of OAIBOX with the energy measurement framework has been
completed. The developed features enabled by the framework at the UOULU site include real-time
power consumption monitoring of individual OAIBOX components, facilitated by an external meter
(Netio Powerbox).

For data exchange between North Node sites, an MQTT bridge has been established. Each
component of the open source 5G environment can publish power consumption data to the central
controller through the MQTT broker (Mosquitto). These components include the OAIBOX gNB and
the Open5GS core, the USRP N310 and the USRP B210, as well as the Quectel Modem 500 and the
Quectel Modem 520 acting as UEs. The enabler is developed and integrated into the North Node
5GTN facility. It facilitates the sustainability framework in the following ways:

• Energy Measurements: Real-time energy consumption measurement of all the components
of open source 5G environment (OAIBOX, USRPs, UEs) was enabled in June 2024 using
Netio PowerBox as external meter.

• Restricting 5G NR Bandwidth: Using the OAIBOX dashboard, various bandwidth
configurations were tested including 100 MHz, 80 MHz, 60 MHz, 40 MHz and 20 MHz in
November 2024 to observe the impact of changing bandwidth on the energy consumption
of the E2E OAIBOX setup.

• Selecting Time-Division Duplex (TDD) Frame Structure: Various TDD slots configurations
were tested in December 2024 which includes configuration options such as TDD=7*DD-F-
2*UU, 3*DD-F-1*UU, 7*DD-F-2*UU, 2*DD-F-7*UU. 2*DD-F-2*UU, 5*DD-F-4*UU. The
impact of changing TDD slots was observed and stored inside the central database.

• Modulation Constellation Restrictions: MCS for DL and UL was changed using the
configuration file and the upper limits were fixed using the yaml file in November 2024,
such as QPSK (max_mcs =4), 16QAM (max_mcs =10), 64QAM (max_mcs =19) and 256QAM
(max_mcs =28). The impact of changing MCS over energy consumption was observed and
stored inside the central database.

• DL MIMO Mode Selection: Finally with the combination of different bandwidths, the effect
of MIMO 2x2 and SISO 1x1 was also observed and stored in central database in December
2024. All the results will be analysed in D5.2.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 39 of 84 © 2023-2025 6G-XR Consortium

4 ENABLERS DEPLOYMENT PHASE

This section reports the work done to deploy the 6G-XR WP2 enablers on the experimental nodes.

4.1 SOUTH NODE USER PLANE ENABLERS

This part describes the deployment and setup of the enablers needed for UC1 Resolution Adaptation
or Quality on Demand and UC2 Routing to the Best Edge in the South Node (see D1.1 [2]).

4.1.1 E1.1 IEAP Edge orchestrator & APIs deployment

The 5TONIC IEAP and related APIs deployment consists of several servers that host VMs with Ubuntu
OS, that have different functions.

IEAP Central is the bare metal server that contains the core of the IEAP installation, this is the MEC
Orchestrator and all the enabler APIs explained above. The IEAP application is installed on a Docker
setup inside the server.

For the edge infrastructure where the IEAP will deploy the applications, OpenStack VMs are provided
to work as the edge nodes. More details were provided in D2.2 [1].

Regarding the proxy developed for interaction with NEF that manages requests for API workflows —
QoD and SimpleEdgeDiscovery—already detailed in sections 3.1.3 and 3.1.4, it has been
containerized through Docker and deployed in a Kubernetes environment also at the 5TONIC
testbed.

Therefore, a refined version of the IEAP deployment along with its integration components is
depicted in Figure 17. The various levels of virtualization (if applicable) for IEAP and edges
components, including the underlying hardware, are illustrated in Figure 18.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 40 of 84 © 2023-2025 6G-XR Consortium

Figure 17: IEAP deployment diagram

Figure 18: IEAP hardware and virtualization diagram

4.1.2 E2.1 Barcelona Edge orchestrator deployment

The Barcelona Edge infrastructure consists of two physical servers that have been in place since the
project's inception. Later, a tower PC was added to support various projects from the FSTP programs

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 41 of 84 © 2023-2025 6G-XR Consortium

across different Open Calls. So far, it has hosted one project from Open Call 1 (Requiem) and two
from Open Call 2 (6G Remix and EMSEOS).

The following images illustrate the servers and PC locations, and the various GUIs used to manage
the clusters and resources. The image below specifically highlights the servers hosting the EDGE in
Barcelona (Figure 19) and the Tower PC (Figure 20).

Figure 19: Servers hosting the 6GXR main cluster

Figure 20: Tower PC hosting the infrastructure used
for the open calls

Figure 21 features the OpenStack GUI, which serves as the infrastructure manager for provisioning
virtual nodes. It showcases a Kubernetes (K8S) cluster, including the master node and two worker
nodes, one of which is equipped with a GPU.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 42 of 84 © 2023-2025 6G-XR Consortium

Figure 21: OpenStack hosting the Edge Infrastructure in Barcelona

View of the cluster status (Figure 22), and the workloads running on the cluster (Figure 23 and Figure
24).

Figure 22: Computing resources

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 43 of 84 © 2023-2025 6G-XR Consortium

Figure 23: Overview of the services running

Figure 24: Current workload

4.1.3 E5.1 Edge Federation deployment

i2CAT has implemented the East-West Bound Interface (EWBI) to enable interaction with resources
in the Barcelona Edge. The API is fully compliant with the reference “.yaml” file proposed by the
GSMA, ensuring adherence to industry standards. The implementation has been validated using this
reference file alongside tools such as Swagger.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 44 of 84 © 2023-2025 6G-XR Consortium

The MEF Manager is the main component responsible for implementing the functionality defined in
the EWBI API. It serves as a lightweight layer that facilitates interaction with the MEC platform
underneath. The MEF Manager has been deployed on a private cloud at i2CAT, running on a virtual
machine (VM). This VM is configured with an interface connected to the provider network, ensuring
reliable connectivity with the rest of the infrastructure.

Since the beginning of MEF Manager development in April 2024, the code has been managed using a
local GitLab instance, where all necessary deployment files are maintained. The picture below shows
a capture of the Gitlabs GUI (Figure 25).

Figure 25: Private Repository for the MEF manager

To streamline the deployment process, a docker-compose.yaml file is provided. This file orchestrates
the deployment of both the MEF Manager and Keycloak, with Keycloak handling user authentication
and generating the required tokens for partners to invoke the API.

The MEF Manager runs on a lightweight Kubernetes (K8S) cluster. To ensure the latest version is
deployed after code modifications, the simplest approach is for the developer to terminate the
existing MEF pod. This prompts K8S to automatically retrieve the updated image from the registry
and launch a new instance. The picture below (Figure 26) shows the pods running in the MEF
manager.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 45 of 84 © 2023-2025 6G-XR Consortium

Figure 26: Cluster hosting the MEF manager

Additionally, the repository includes a “gitlab-ci.yml” file, which automates testing and builds a new
image whenever code changes are committed. The updated image is then stored in the registry,
ensuring the availability of the latest version for deployment.

Once the MEF is up and running, developers can interact with it by using Swagger tool. The following
screenshots (Figure 27, Figure 28, Figure 29, Figure 30, and Figure 31) highlight the basic set of
functionalities implemented from the extensive API definition defined by GSMA. The rest of the
functionalities defined in the EWBI are out of the scope of this project.

Figure 27: Federation Management methods

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 46 of 84 © 2023-2025 6G-XR Consortium

Figure 28: Availability Zone Info Synch

Figure 29: Artefact Management

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 47 of 84 © 2023-2025 6G-XR Consortium

Figure 30: Application onboarding

Figure 31: Application Deployment Management

4.1.4 Network Exposure Function (NEF) APIs deployment

The deployment of all NEF APIs (E6.1 Service Parameter API, E6.2 UE Location API, E6.3 QoS Session
API and E6.4 Data Collection API) was done on the same component in the South Node. The idea of
the NEF is to expose in a secure way some useful capabilities from the 5G network to the Application
Functions (AFs). In this way, the critical functions of the 5G Core from direct access by third parties
(3PPs). Besides, the features that are exposed to the AFs must be controlled to make sure that the
requests made by a single AF will not exhaust the resources for the rest of the network users. The
NEF component at 5Tonic is a server running containers that have an IP address in the subnet

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 48 of 84 © 2023-2025 6G-XR Consortium

10.3.3.0/24, in a range separated from the 5G Core. The NEF can reach the 5G Core functions (the
well-known AMF, SMF, AuSF, UDM, UDR, etc.) via layer 3 routing. Also, any AF and the CAMARA
functions running on the Edge platform managed by Capgemini can reach the NEF, so they can make
the calls for requesting the adaptation of the network to the needs of the services. The deployed
setup is illustrated in Figure 32.

Figure 32: NEF setup in the South Node

4.2 SOUTH NODE CONTROL PLANE ENABLERS

This section details the deployment and setup of the enabler needed for UC3 Control plane
innovations in the South Node (see D1.1 [2]).

4.2.1 E9.1 IMS Data Channel Server deployment

The IMS Data Channel Server (DCS) used in the South Node was originally deployed on an Azure
environment located in Paris, which was the closest location to 5Tonic at the moment of the
deployment, in May 2024. The IMS DCS VMs were deployed in a few days and then the
establishment of the VPN was completed by June. Afterwards, during June 2024, an Azure platform
was made available in Madrid, so the IMS DCS VMs were migrated and the VPN endpoint was moved
to the new platform.

As shown in Figure 33, the full IMS Data Channel solution requires the legacy IMS Core functions
(depicted on the left side) and the MATSUKO signaling and media servers (depicted on the right side).
In the scope of WP2, the IMS Core functions were deployed in 5Tonic. The functions from Matsuko
were deployed in the scope of WP3, so they are out of scope of this document.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 49 of 84 © 2023-2025 6G-XR Consortium

Figure 33: IMS DC deployment in the South Node

The IMS Core functions IMS-AS, P-CSCF and I/S-CSCF were deployed in 5Tonic between March and
September 2024. In November 2024, the connectivity among those VMs and IMS DCS VMs was
validated.

The Home Subscriber Server (HSS) function was delayed because it was dependent on the
deployment from scratch of a new full 5G Core at 5Tonic including the prior installation of new
servers, new switches and cabling. The HSS deployment was completed in the beginning of April
2025.

4.3 NORTH NODE 3D DIGITAL TWIN ENABLERS

This section describes the deployment and setup of the enablers required for UC4 Collaborative 3D
Digital Twin-like Environment in the North Node (see D1.1 [2]).

4.3.1 E3.1 North Node adapter deployment

NNA is a software component that plays a crucial role in the setup and management of network
slices and KPI measurement jobs within the 5GTN. It acts as a communication bridge between the
North Node Web Portal and the underlying 5GTN resources and management technologies. NNA is
deployed at the 5GTN on a Linux-based (Ubuntu 24.04) virtual server under Supervisor, a process
management software tool. The deployment of NNA and its related components was successfully
completed in M24. The deployment of NNA including related network components is depicted in
Figure 34.

NNA provides North Node Web Portal a REST API through which the web portal can send an
experiment specification document, i.e. Network Slice Template (NST), to initiate an experiment.
Through the API the web portal can also monitor the state of the running experiments or force them
to end. The API that NNA provides to the North Node Web Portal is described in detail in D2.2 [1] and
was the first piece of functionality deployed in the project in M18.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 50 of 84 © 2023-2025 6G-XR Consortium

Figure 34: NNA deployment with related network components

NNA oversees the lifecycle of KPI measurement jobs by using Qosium Storage, a server and database
software tool providing REST API for managing measurements and retrieving collected KPI data.
Qosium Storage and its REST API are used by NNA to get DL/UL KPI values per slice in one second
intervals. NNA deployment with the Qosium component was completed in M24.

Cumucore is the core network solution used in the North Node use cases, and NNA uses it for
creating and deleting network slices through a REST API. Cumucore is configured for UE subscriptions
and UPFs, which are deployed on VMs with N3 and N6 interfaces connected through Open vSwitch
(OvS). NNA deployment and validation of interworking with Cumucore was completed in M24.

To instantiate virtual machines at the edge and deploy software on them as requested by the user of
the North Node web portal, NNA uses the Open-Source MANO (OSM) component. OSM provides a
REST API for managing VMs by OpenStack. This REST API is called by NNA, once at the beginning of an
experiment to initiate VMs and once at the end of the experiment to tear down the OpenStack VMs.
Support for the OSM interface in NNA was developed relatively late in the project (in M26) as this
feature did not have high priority in the project.

NNA relays per-slice DL/UL KPI measurement data from Qosium to the AI/ML component, which in
turn returns optimized resource allocation (i.e. bandwidth) between the used network slices. The
AI/ML component provides NNA with a REST API. The support for AI/ML communication in NNA was
completed in M22.

Finally, NNA enforces dynamic resource allocation obtained from AI/ML by communicating with OvS.
NNA sends JSON-RPC messages over a TCP socket to OvS to configure ingress policy rates and burst

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 51 of 84 © 2023-2025 6G-XR Consortium

values to the N3 and N6 interfaces connected to the slice-specific UPFs. The feature of enforcing
network slice resource allocation at the switch was tested and deployed in M25 of the project.

4.3.2 E3.2 3D Digital Twin deployment

As a 3D Digital Twin use case, the service of 5G slices for VR glasses XR Fab Lab App is adaptedly
controlled with AI/ML Policy Network in the edge service. Its deployments are structured in Figure 35
as follows,

• 5G slice service is delivered by Cumucore 5G with slice capable 5G modems.

• Qosium measurement probe is measureing QoS on the traffics of XR Fab Lab App on the user
VR glasses device side, and storing the data into Qosium Storage in the edge.

• The service level of 5G slices in Cumucore is managed by Policy Network’s AI/ML by analyzing
the QoS data on Qosium mesurement system via NNA’s Rest APIs.

Figure 35: 3D Digital Twin XR Fab Lab App deployment in the local 5G edge system

4.3.2.1 5G System Connectivity:

Due to the lack of built-in 5G radio connectivity in VR glasses, as shown in Figure 36, a Quectel 5G
modem is integrated via a wired connection. The Meta Quest 3 connects to an Ubuntu laptop
through a USB-to-Ethernet adapter, with Ubuntu routing data from the 5G modem to the VR glasses
while also performing Qosium Probe QoS/KPI measurements. Additionally, the Apple Vision Pro
(APV) is connected to a MacBook using its internet-sharing function. Since the Quectel 5G modem
driver requires a Linux platform, a Qosium Node is positioned between the MacBook and the Quectel
modem to provide both 5G connectivity and Qosium probe measurement functionality.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 52 of 84 © 2023-2025 6G-XR Consortium

Figure 36: 5G modem connection with VR glasses

4.3.2.2 XR Fab Lab Application:

The XR Fab Lab application is hosted on the local edge server and comprises Babylon.js and
OpenVidu along with its backend functions. As implementation shown in Figure 37, Babylon.js is used
to deploy the 3D VR environment on the WebXR platform for users' VR glasses, supporting a variety
of XR gadgets within its open platform. The OpenVidu platform facilitates sessions for voice, video,
and motion transmission for the VR glasses, and also supports video streaming for 3D printer
surveillance.

Figure 37: XR Fab Lab of Babylon.js and OpenVidu connectivity implementation

4.3.2.3 Network QoS/KPI Measurement:

For input to the AI-based resource optimization Policy Network, network traffic is measured using
the Qosium platform, including its Probe and Storage components. The AI agent analyzes the traffic
data stored and optimizes slicing and resource management within the Cumucore 5G system. The
traffic consists of multi-modal communication, including voice, motion, video streaming, and VR
scene environments. To support AI learning and analytics validation, a test procedure is established
in Figure 38: (1) launch the Babylon.js VR scene, (2) start video streaming from the 3D printer
surveillance, and (3) trigger VR scene transitions to generate diverse traffic patterns.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 53 of 84 © 2023-2025 6G-XR Consortium

Figure 38: XR Fab Lab App procedure for Qosium measurement validation

4.3.3 E3.4 Resource Optimization Deployment

The AI-based resource optimization solution has been deployed as a self-contained virtual machine
(VM), ensuring portability, ease of integration, and environment consistency. The deployment
includes the pre-trained AI model, the Flask-based REST API, and the necessary runtime
environment, all packaged within the VM to simplify distribution and integration with other system
components.

The VM runs a Linux-based operating system and hosts a Python-based application stack. The core
components of the deployment include:

• AI Model: A pre-trained policy network implemented in PyTorch, responsible for making
real-time decisions on network resource allocation.

• REST API: Implemented using Flask, exposing endpoints to receive KPIs and return optimized
resource allocation for multiple network slices.

• Waitress WSGI Server: Deployed as the production-grade server to run the Flask application,
providing reliable and scalable API access.

The resource optimization VM is designed to interact directly with the North Node Adapter (NNA),
which serves as the primary source of real-time KPIs. The integration between the NNA and the AI
model is facilitated through RESTful communication. The NNA collects network measurement data
and operational metrics and forwards them in JSON format to the resource optimization API running
within the VM. Upon receiving the KPIs, the AI model processes the data, performs inference, and
responds with optimized resource allocation decisions for each network slice.

This deployment architecture ensures that:

• The AI model operates independently but remains tightly coupled with the NNA for data-
driven decision-making.

• Updates to the AI model or API can be managed centrally within the VM without affecting
external systems.

• The solution can be replicated or scaled easily by deploying additional VM instances in other
parts of the network.

This modular and isolated deployment approach makes the resource optimization engine a reliable
plug-and-play component within larger network management architectures. It can be seamlessly

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 54 of 84 © 2023-2025 6G-XR Consortium

integrated into existing infrastructure and provides a scalable path for future updates or
enhancements, such as online learning.

The resource optimization deployment was finalized in M25, following the successful validation of
the AI model in simulated and real-time environments. The trained policy network is based on live
data from our network provided by the NNA: it was initially pre-trained offline on a comprehensive
collection of simulated KPI traces, spanning a wide variety of throughputs, latencies, jitters, packet-
loss rates, and signal strength generated by the 5G test network. After this offline phase, an online
fine-tuning step was done as soon as the VM was deployed and connected to the live NNA feed,
adapting the policy to actual traffic patterns. Figure 39 below shows learning-curve snapshots to
demonstrate the convergence and generalization across different KPI scenarios and the expected
behavior of the AI model.

Figure 39: Policy network training and allocation trend

The integration and interaction between the AI model, API, and NNA have been designed to support
both operational efficiency and system robustness in dynamic network environments.

4.3.4 E7.1 Cumucore Slice Management API deployment

Cumucore is deployed on a bare-metal server at the 5GTN facility and is configured to accept REST
API calls from external hosts at port 9000. Cumucore was deployed early in the project in M21.
Cumucore is accessed by NNA which requires that both reside in the same 5G test network and have
no firewall in between.

Cumucore is used to configure UEs (subscriptions) and UPFs with DNs per slice as depicted in Figure
40. The information how slices are created and configured for experiments comes from NNA, which

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 55 of 84 © 2023-2025 6G-XR Consortium

takes advantage of the slice creation part of the Cumucore REST API. Controlling the slice parameters
such as throughput is not managed via Cumucore as it has no support for optimizing slice resources
on-the-fly.

Figure 40: The role of NNA and Cumucore in slice management

Adjusting slice parameters (i.e. downlink/uplink throughput) on-the-fly is not done using the
Cumucore REST API as in the development phase it was discovered that it did not work. An
alternative method was therefore devised that involves adjusting slice DL/UL throughput at Open
vSwitch level by setting ingress policy rates on N3 and N6 interfaces. This involves NNA sending
JSON-RPC formatted messages to the switch whenever throughputs must be adjusted.

4.4 NORTH NODE ENERGY FRAMEWORK ENABLERS

This section explains the deployment of the enablers required for UC5 Energy Measurement
Framework for Energy Sustainability in the North Node (see D1.1 [2] for UC description).

4.4.1 E3.3 Energy Management deployment

The sustainability experimentation framework includes bi-directional, multifunctional PV-hybrid
systems on the production side and 5GTN components such as OAIBOX, USRPs, Quectel Modems as
UE, and commercial gNBs on the consumption side. Within the energy measurement framework, the
central controller integrates three forecasting APIs: energy weather forecasting for the next 66
hours, ELSPOT electricity spot pricing for the next 24 hours, and real-time CO2 estimates from
Fingrid’s Open data API. These APIs are used to orchestrate, manage, and support decision making
regarding power saving measures for the gNB sites. Figure 41 illustrates the integration of the
developed features within the energy measurement framework. The three core functionalities
include orchestration, data exchange, and forecasting APIs are managed by the central controller. On
the UOULU side, this functionality is handled by the Nokia OpenEdge server, while on the VTT side,
the Venus GX serves this role. The Venus GX also facilitates RAN consumption forecasting, PV yield
prediction based on historical data, and dimensioning of the storage system to optimize energy
utilization.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 56 of 84 © 2023-2025 6G-XR Consortium

Figure 41: North Node Energy Measurement Framework

The energy measurement framework has been implemented using Python programming language,
with the central controller running on an Open Edge server hosted on a Linux-based virtual machine.
Mosquitto is used as the MQTT broker to enable data exchange for external meters, forecasting APIs,
and on-site sensor data. MySQL serves as the central database for collecting production and
consumption data. Finally, Grafana is used for real-time visualization of all the collected data.

Visual Studio Code is used to run the scripts and connect to the host server. The Python scripts
perform the following tasks:

1. Fetch energy weather forecast data from FMI (66 hours ahead, updated every 3 hours),
publish relevant data via the MQTT bridge, store it in MySQL, and visualize it in Grafana in
real time.

2. Fetch electricity spot pricing data from ELSPOT (24 hours ahead), publish it using the MQTT
bridge, store it in MySQL, and visualize it in Grafana.

3. Fetch real-time CO₂ estimates from Fingrid’s API (updated every 3 minutes for gCO₂ per
kWh), publish it using the MQTT bridge, store it in MySQL, and visualize it in Grafana.

4. Collect external meter data, on-site sensor data, and PV-hybrid system data (including BESS)
and store it using Venus GX at VTT and the central database at UOULU.

4.4.2 E8.1 OAIBOX deployment

As described in D2.2 [1], the OAIBOX allows different RAN configurations (tested non-dynamically) to
observe the effect on energy consumption. These configurations include bandwidth, TDD frame, MCS
and MIMO/SISO. Measurements were repeated with two different Radio Units: USRP n310 and USRP
b210. Four potential radio configuration changes to save energy were tested in North Node UOULU
5G indoor test environment using a single OAIBOX MAX device UE applied in the tests is a
combination of 5G Quectel modem and Windows PC. The tested radio configuration changes were:

• Restricting the used bandwidth between 20 MHz and 100 MHz.

• Restricting the modulation constellation between QPSK, 16QAM, 64QAM and 256
QAM(max).

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 57 of 84 © 2023-2025 6G-XR Consortium

• TDD slot configuration selection, and DL/UL MIMO mode selection.

The purpose of the experiments was to observe if these radio configuration changes conserve energy
in North Node UOULU O-RAN setup with the energy measurement framework. For example, by
reducing the network capacity during low data traffic conditions such as nighttime, and using
maximum bandwidth and MCS when high energy availability is predicted using energy weather
forecasting.

These radio configuration changes and technical details about OAIBOX MAX device are described in
the project deliverable D5.1 [10]. The power consumption was measured separately for the OAIBOX
MAX device, SDR device (USRP B210 or N310) and 5G Quectel modem as shown in Figure 42.
Monitoring the energy consumption separately for USRP provides energy consumption information
of the radio unit of gNB. The OAIBOX MAX device contains the 5G core and other gNB functions
(excluding radio unit). 5G Quectel modem is a communication part of a UE also including a
computing device (Raspberry Pi 5). Netio Power Box was used as an AC power meter for measuring
separately current (I), voltage (V), and true power factor (TPF). These values were used to calculate
power (P), 𝑃 = 𝐼 ∙ 𝑈 ∙ 𝑇𝑃𝐹, with the accuracy of 0.1 W. These energy-related parameter values are
delivered to Grafana dashboard for visualizing the results and for data analytics.

Figure 42: OAIBOX power consumption enabled by North Node energy measurement framework

In most cases, radio configurations that provide higher bitrates consume more power during no
traffic periods and during TCP speed tests. It seems that restricting the used bandwidth is the best
option to conserve energy compared to other tested radio configuration changes. Notable power
consumption reduction has been seen in all monitored devices (OAIBOX MAX, USRP B210, n310 and
Quectel modem) when decreasing the bandwidth. This shows that adaptive tuning of bandwidth
based on traffic needs such as network slicing is an effective energy saving method. However, when
there is high traffic in the network then the higher bandwidth should be used because it provides
remarkably higher amount of received data per energy unit. All the experimentation results, log files
including test case validation and KPIs validation will be reported in D5.2.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 58 of 84 © 2023-2025 6G-XR Consortium

5 ENABLERS INTEGRATION VALIDATION PHASE

This chapter reports the tests done to validate that the enablers interact well with each other and to
provide the evidence that the enablers are ready for the project UCs.

5.1 SOUTH NODE USER PLANE ENABLERS

This section provides evidence of the integration validation of the enablers for UC1 Resolution
Adaptation or Quality on Demand and UC2 Routing to the Best Edge in the South Node (see D1.1 [2]
for UCs description).

5.1.1 Edge Federation validation

This section outlines the various tests conducted to successfully integrate the IEAP and MEF through
the EWBI interface implemented at both sides in 5Tonic-Madrid and i2CAT-Barcelona respectively.
The primary objective of this demonstration is to manage a third-party edge from the IEAP while
simultaneously testing and validating the federation functionalities of both IEAP and MEF.

All tests were carried out through the IEAP GUI that allows Cloud Service Providers (CSPs) or
customers to interact with the orchestrator. Another important consideration is that a middleware
proxy has been developed and deployed to integrate IEAP and MEF. Further details on the proxy's
role in each communication are illustrated in the figures presented in the following subsections.

5.1.1.1 Federation Creation

First, a new federation must be created through the IEAP GUI with the appropriate configuration
parameters, including the operator, federation identifier, authentication endpoint, and the EWBI
endpoint of the designated partner. In this case, the EWBI endpoint corresponds to the proxy, which
subsequently forwards requests to the actual MEF endpoint.

Once the new federation is created, the IEAP GUI displays its status as planned (Figure 43). This
action then triggers the acceptance procedure, as illustrated in Figure 44, which in turn invokes the
following API method:

• POST /partner

The proxy logs capturing the MEF response are shown in Figure 45. Upon completion of the
workflow, the federation status transitions from planned to federated, as depicted in Figure 46.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 59 of 84 © 2023-2025 6G-XR Consortium

Figure 43: Planned federation from IEAP GUI

Figure 44: Accept Federation from IEAP GUI

Figure 45: Proxy logs for Federation Acceptance

Figure 46: Accepted Federation from IEAP GUI

5.1.1.2 Zone Acceptance

Once a new federation has been configured, the next step is to accept the partner zone. Additionally,
the partner will reserve compute and network resources for that specific zone. This process is
executed using the following API method:

• POST /{federationContextId}/zones

When selecting the Accept option for the offered zone Omega (as shown in Figure 47), the previously
introduced method is invoked. More specifically, the background processes associated with this
action are illustrated in Figure 48. For further clarification, the corresponding proxy logs are provided
in Figure 49. Finally, the IEAP GUI displays the zone as accepted, as depicted in Figure 50.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 60 of 84 © 2023-2025 6G-XR Consortium

Figure 47: Zone Acceptance from IEAP GUI

Figure 48: Zone Acceptance workflow

Figure 49: Proxy logs for Zone Acceptance

Figure 50: Zone Accepted from IEAP GUI

5.1.1.3 Application Onboarding

The next step involves onboarding the application in the Omega zone. The preliminary steps of
creating the application artifact and uploading it through the IEAP GUI have been performed
beforehand. However, these steps are not relevant to the specific tests conducted in this section and
are therefore omitted. The process consists of:

1. Creating a helm chart (basic nginx container has been chosen).
2. Compressing it in a .tar file.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 61 of 84 © 2023-2025 6G-XR Consortium

3. Uploading it to IEAP GUI (Figure 51)

Once the artifact is prepared, the application onboarding process is initiated using the following API
methods:

• POST /{federationContextId}/artefact

• POST /{federationContextId}/application/onboarding

Onboarding the application through IEAP GUI (Figure 52) implies calling these methods sequentially.
The first method uploads the artefact, while the second submits the application details to the
federated operator platform. Moreover, HTTP request/response workflow is depicted in Figure 53,
proxy logs are shown as well in Figure 54 for better clarity, and how the successful onboarding is
reflected in IEAP GUI is illustrated in Figure 55.

Figure 51: Artefact Uploading from IEAP GUI

Figure 52: Application Onboarding from IEAP GUI

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 62 of 84 © 2023-2025 6G-XR Consortium

Figure 53: Application Onboarding Workflow

Figure 54: Proxy logs for Application Onboarding

Figure 55: Application Onboarding result from IEAP GUI

5.1.1.4 Application Instance Deployment

The final test involves creating an instance of the successfully onboarded application on the operator
platform. This process is executed using the following API method:

• POST /{federationContextId}/application/lcm

No modifications are required from the proxy's perspective, meaning the request and response are
passed through unchanged. The following figures illustrate the status in the IEAP GUI before and
after the instance creation (Figure 56 and Figure 58) and provide the corresponding proxy logs
(Figure 57) to verify the response. Finally, Figure 59 shows the app instance deployed at the edge
from i2CAT-Barcelona side.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 63 of 84 © 2023-2025 6G-XR Consortium

Figure 56: Application Instance Deployment from IEAP GUI

Figure 57: Proxy logs for Application Instance Deployment

Figure 58: Application Instance Deployment result from IEAP GUI

Figure 59: Application Instance Deployment result from i2CAT-Barcelona

5.1.1.5 Lessons Learned during Federation Integration

During the deployment and integration phase, it was identified that the GSMA OPG EWBI API
definition lacked clarity and consistency. To facilitate development and maintain stability, the
partners agreed to freeze the API at version 1.1.0, as the definition was undergoing frequent

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 64 of 84 © 2023-2025 6G-XR Consortium

changes. In subsequent versions, although the API specification was updated, the corresponding
sample data was often not revised accordingly. In several instances, this led to ambiguities that
required the development teams to reach a consensus on the expected parameter formats.

5.1.2 QoS change validation

The validation tests consist of modifying the QoS slice profiles assigned to a 5G subscriber, where
different quality indicators are defined. These tests validate the enablers E4.1 QoD API and E6.3 QoS
Session API.

It has been demonstrated by invoking the previously mentioned (section 3.1.3) QoD API POST
method to change the slice profile from barcelona-high to barcelona-low. The API call response,
along with the request payload detailing the input parameters, is shown in Figure 60. Additionally,
the proxy logs corresponding to this operation are presented in Figure 61. Finally, in Figure 62, the
requests for retrieving the slice profile associated with a specific phone number show different
results before and after the QoD API call, thereby confirming the successful modification of the slice
profile.

Figure 60: Request and response for QoD create session (I)

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 65 of 84 © 2023-2025 6G-XR Consortium

Figure 61: Proxy logs for AsSessionWithQoS create subscription (I)

Figure 62: Slice profile information retrieving (I)

5.1.3 Finding closest Edge validation

The validation tests consist of retrieving the TAC from the NEF, and therefore, the IEAP determines
the closest edge based on that information. These tests validate the enablers E4.2 Simple Edge
Discovery API and E6.2 UE Location API.

Therefore, two tests have been performed, one of them for a UE located at Barcelona and the other
for a UE placed at Madrid. Figure 63 and Figure 64 depict the SimpleEdgeDiscovery call for the first
and second test respectively, and Figure 65 and Figure 66 show the proxy logs where the different
TACs are returned by the NEF as UEs are in different testbeds.

Figure 63: Request and response for SimpleEdgeDiscovery (Barcelona)

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 66 of 84 © 2023-2025 6G-XR Consortium

Figure 64: Request and response for SimpleEdgeDiscovery (Madrid)

Figure 65: Proxy logs for MonitoringEvent (Barcelona)

Figure 66: Proxy logs for MonitoringEvent (Madrid)

5.1.4 Changing UPF validation

The changing UPF validation tests are similar to the tests performed in section 5.1.2, where the
change of QoS slice profiles assigned to a 5G subscriber was done. However, in this case the change
was made from madrid-low to barcelona-high, which implies changing not only the QoS on demand,
but also changing the UPF the UE is connected to from Madrid to Barcelona. Figure 67 shows the
request done to QoD API, Figure 68 the proxy logs, and Figure 69 the change in UE slice profile.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 67 of 84 © 2023-2025 6G-XR Consortium

Figure 67: Request and response for QoD create session (II)

Figure 68: Proxy logs for AsSessionWithQoS create subscription (II)

Figure 69: Slice profile information retrieving (II)

The UE used for this particular test was located in the Barcelona testbed. Therefore, it is expected
that the communication performance will vary depending on whether the UE is connected to the
Madrid UPF or the Barcelona UPF, due to the proximity difference between the UE and the UPF.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 68 of 84 © 2023-2025 6G-XR Consortium

Figure 70 and Figure 71 display the distinct time values obtained from a ping command to reach the
UE, highlighting the latency differences between the two UPF connections.

Figure 70: Ping command for UE connected to Madrid UPF

Figure 71: Ping command for UE connected to Barcelona UPF

5.1.5 Collecting metrics validation

This test consists in gathering performance metrics from the network and validates the enabler E6.4
Data Collection API. The metrics are used in the UCs by the Application Function (AF) called
Congestion Detection Function (CDF) developed within WP3.

For the test, iPerf3 tool was used to produce 50 Mbps downlink traffic between an application server
located at 5Tonic lab in Madrid and a UE located in Barcelona. Figure 72 demonstrates successfull
retrieval of metrics for the time period when traffic was ongoing. These metrics report a downlink
data rate of 50 Mpbs, as expected.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 69 of 84 © 2023-2025 6G-XR Consortium

Figure 72: Data Collection API example

5.2 SOUTH NODE CONTROL PLANE ENABLERS

This section reports the integration validation tests done for the enablers needed for UC3 Control
plane innovations in the South Node (see D1.1 [2] for UC description).

5.2.1 IMS VMs connectivity validation

All the required flows among the IMS and the Data Channel VMs have been verified. The details of
the flows, the required protocols, and the source and destination ports are listed in Table 8.

Table 8: IMS Data Channel solution flows

Flows Protocol Source Port Destination
Port

I/S CSCF -> DCAS SIP/TCP, UDP ANY 5060, 5061

DCAS -> I/S CSCF SIP/TCP, UDP ANY 5060

vBGF -> DCAS RTP, SRTP, DTLS, SCTP ANY 1024-65535

DCAS -> vBGF RTP, SRTP, DTLS, SCTP ANY 1024-65535

PBX-GW -> Agent WebSocket /5000 (browser agent
<-> pbx-gw), 8081 (alp logic <->
pbx-gw) /TCP

5000, 8081 ANY

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 70 of 84 © 2023-2025 6G-XR Consortium

Agent -> PBX-GW WebSocket /5000 (browser agent
<-> pbx-gw), 8081 (alp logic <->
pbx-gw) /TCP

ANY 5000, 8081

PBX -> PBX-GW SIP/TCP, UDP ANY ANY

PBX-GW -> PBX SIP/TCP, UDP ANY ANY

vBGF -> PBX-GW RTP, SRTP, DTLS, SCTP ANY 1024-65535

PBX-GW -> vBGF RTP, SRTP, DTLS, SCTP ANY 1024-65535

PBX -> Agent SIP-WS/8089/TCP HTTP,
HTTPS/8088, 8089/TCP

8088, 8089 ANY

Agent -> PBX SIP-WS/8089/TCP HTTP,
HTTPS/8088, 8089/TCP

ANY 8088, 8089

PBX -> Agent RTP ANY 1024-65535

Agent -> PBX RTP ANY 1024-65535

PBX -> vBGF RTP ANY 1024-65535

vBGF -> PBX RTP ANY 1024-65535

Agent -> vBGF DTLS, SCTP ANY 1024-65535

vBGF -> Agent DTLS, SCTP ANY 1024-65535

Figure 73 below shows an example of this validation. It is a connectivity test between DCAS and I/S-
CSCF, and the connection to port 5060.

Figure 73: Example of IMS VMs connectivity validation

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 71 of 84 © 2023-2025 6G-XR Consortium

5.3 NORTH NODE 3D DIGITAL TWIN ENABLERS

This section describes the integration tests run on North Node enablers. As NNA is the main enabler
in the North Node, five module integration tests were implemented in the development phase. This
section reports the results from those tests. The results of the integration test between the North
Node Web Portal and Qosium are also presented.

5.3.1 NNA – Qosium Integration Test

Description: Test that two-point measurements per slice start correctly and downlink and uplink KPIs
(throughput, jitter, latency, packet loss ratio) per slice can be obtained from Qosium. Finally, test that
the measurements are stopped correctly.

Steps: Perform the following Qosium REST API calls per slice:

• POST /measurement/start

• GET /AverageResult?qmId=<id>&limit=1&sort=desc

• GET /measurement/stop?QsMeasId=<id>

Expected outcome: All REST API calls return 200 – OK status code and KPIs are returned in responses.

Result: The REST API calls returned OK status and KPIs were returned correctly. The initiation of per-
slice measurements, fetching KPI data, and terminating the running measurements can be seen in
Figure 74, Figure 75, and Figure 76, respectively. PASSED.

Figure 74: Test logs of the initiation of per-slice measurements in Qosium

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 72 of 84 © 2023-2025 6G-XR Consortium

Figure 75: Test logs of fetching per-slice DL/UL measurement KPIs from Qosium

Figure 76: Test logs of the termination of per-slice measurements in Qosium

5.3.2 NNA – Cumucore Integration Test

Description: Verify that two slices can be created and deleted through the Cumucore REST API by
providing a set of slice configuration parameters.

Steps: Perform the following Cumucore REST API calls per slice:

• POST /api/v1.0/network-slice/slice-instance

• DELETE /api/v1.0/network-slice/slice-instance/<id>

Expected outcome: All REST API calls return 200 – OK status code and two slices are created and
visible in Cumucore GUI until they are deleted.

Result: The REST API calls returned OK status, and the created two slices were visible in Cumucore
GUI before they were deleted by the test. Figure 77 shows the logs from creating and deleting

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 73 of 84 © 2023-2025 6G-XR Consortium

network slices and Figure 78 demonstrates how the created slices are visible in Cumucore GUI.
PASSED.

Figure 77: Test logs of creating and deleting slices in Cumucore

Figure 78: Created slices visible in Cumucore GUI

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 74 of 84 © 2023-2025 6G-XR Consortium

5.3.3 NNA – AI/ML Integration Test

Description: Test that network resource allocation decision is received from AI/ML via a REST API call
by submitting per-slice KPI data as a parameter.

Steps: Perform the following AI/ML REST API call:

• POST /allocate_resource

Expected outcome: The AI/ML REST API call returns 200 – OK status code and returns network
resource allocation between slices as fractions of one (1 meaning 100 per cent).

Result: The REST API call returned OK status and network resource allocation decision. The execution
logs of the test can be seen in Figure 79 showing OK response and returned allocation. PASSED.

Figure 79: Test logs of the AI/ML integration test

5.3.4 NNA – OSM Integration Test

Description: Test that two virtual machine instances with desired applications (Nginx on both hosts)
are instantiated and stopped correctly in OpenStack.

Steps: Perform the following OSM REST API calls:

• POST /osm_create

• DELETE /osm_delete

Expected outcome: All REST API calls return 200 – OK status code and instantiated VMs are visible in
OpenStack GUI until they are deleted by the test. While running, Nginx web server can be reached via
web browser on both VMs.

Result: The REST API calls returned OK status and VMs were visible in OpenStack until deleted by the
test script. Nginx was reachable on both VMs via web browser. The logs of the test script execution
can be seen in Figure 80, which shows successful initiation and teardown of OpenStack VMs. PASSED.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 75 of 84 © 2023-2025 6G-XR Consortium

Figure 80: Test logs of the OSM integration test

5.3.5 NNA – OVS Integration Test

Description: Test that ingress policy rates and burst values can be set for N3 and N6 interfaces in
Open vSwitch responsible for handling the rate limiting of slices.

Steps: Perform the following JSON-RPC queries to OVS listening on port 6640:

• Send a JSON-RPC message with ingress rate/burst values set for each interface

• Send a JSON-RPC message with zero ingress rate/burst values for each interface

Expected outcome: All JSON-RPC messages return a response without error and all interfaces have
desired policy rates and burst values set accordingly until set back to zero by the test script.

Result: All queries to OVS return error value “None” (success) and rate and burst values could be
verified to have changed by using ovs-vsctl command line tool at the OVS host. Log of test run
altering ingress rates and burst values on N3 and N6 interfaces is shown in Figure 81. PASSED.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 76 of 84 © 2023-2025 6G-XR Consortium

Figure 81: Logs of the OVS integration test

5.3.6 North Node Web Portal – Qosium Measurement Integration Test

Description: In this section, the user should view and analyse the generated results related to the
experiment. The information is presented to the user through the Grafana dashboard.

Steps: To test and receive measurement results, the user first sends the NST to NNA. Then, the
measurements generated by Qosium are stored in the database by the North Node web portal. A
request is sent to Qosium every 50 seconds to retrieve the latest measurements, which are then
saved in the database. The user can select four KPIs to view the related measurements and, if
desired, download the results. Additionally, the user can terminate the experiment in Qosium when
needed by sending a request to NNA to stop running measurements in Qosium.

• POST /home/api/grafana/

• POST /home/api/downloadcsvview/

• DELETE /home/api/terminate/<id>/

Expected outcome: The user should be able to easily select their preferred KPIs, clearly view the
results in real time, download the results, and terminate the experiment if needed.

Result: During the experiment, the user can select their desired KPIs on the dashboard and monitor
the corresponding results in real time. The result download and experiment termination
functionalities were also successfully tested. PASSED.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 77 of 84 © 2023-2025 6G-XR Consortium

Figure 82 illustrates the integration between the North Node Web Portal and Qosium Storage.

Figure 82: Qosium measurement results in North Node Portal

5.4 NORTH NODE ENERGY FRAMEWORK ENABLERS

This section includes the integration tests carried out on the North Node UOULU side of energy
measurement framework and sustainability experimentation enablers. At the UOULU site, the
OAIBOX comprising the gNB, core, radio unit, and user equipment, serves as the main enabler for
carrying out integration and validation of WP5 experimentations. During the development phase,
module integration tests were conducted to validate the KPIs defined in D1.1 [2], including the cost
counter, CO2 counter, and active energy counter. These tests include 66-hour ahead energy weather
forecast, 24-hour ELSPOT electricity pricing, and real-time FINGRID’s CO2 emission estimates. They
also enabled data exchange between VTT and UOULU including the real time energy consumption of
individual network components OAIBOX gNB, core, USRPs and UEs. This section presents the results
of these tests, covering the integration of data exchange between VTT and UOULU (North Node gNB
sites).

5.4.1 Data exchange between VTT and UOULU gNB sites using MQTT bridge broker
integration

Description: To test and validate successful data exchange between the VTT and UOULU gNB sites,
real-time energy monitoring was performed using the MQTT bridge broker (Mosquitto). During the
test, MQTT clients subscribed to all relevant topics and consistently received live data from energy
monitoring equipment deployed at both sites as shown in Figure 83. This included readings such as
voltage, current, energy, power factor, and solar charger power yield from VTT-Oulu-Zencon solar
charger and the UOULU external meter Netio-PowerBOX-77. In addition, data from forecasting APIs,
PV production inverters, and on-site sensors were also successfully transmitted between the North
Node sites.

Steps: Perform the following steps:

• Start the MQTT client with command:

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 78 of 84 © 2023-2025 6G-XR Consortium

mosquitto_sub -t "#" -i "emf" -p <port> -h <broker_address> -u <username> -P <password>

• Subscribe to Power and Energy Topics
VTT-Oulu-Zencon/solarcharger/258/Yield/Power
Values: {"value": 1366.77001953125}, {"value": 140.0}
VTT-Oulu-Zencon/battery/512/Dc/0/Voltage
Values: {"value": 49.19999694824219}
Voltage, current, power factor, energy, and load across multiple outputs (e.g.,
output/1/voltage, output/2/current, etc.) including active energy counter for individual
network components such as OAIBOX gNB, core USRPs and UEs.

Result: The MQTT-based data exchange worked as expected. All relevant KPI data was received in
real time from both VTT and UOULU sites without any interruptions or message loss. The continuous
flow of active energy counter values confirms that the MQTT bridge broker is functioning reliably.
The results of the message flow and KPI updates can be seen in Figure 83.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 79 of 84 © 2023-2025 6G-XR Consortium

Figure 83: Data exchange validation between VTT and UOULU

5.4.2 North Node UOULU forecasting APIs integration

Description: This section covers the use of forecasting APIs, including the site-specific FMI energy
weather forecast (up to 66 hours ahead), Elspot electricity pricing (24-hour ahead), and real-time CO2
emissions estimates from Fingrid. The data is stored in a central database and visualized for the user
through a Grafana dashboard.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 80 of 84 © 2023-2025 6G-XR Consortium

Steps: The following steps were performed to integrate and validate the forecasting APIs into the
energy measurement framework.

• FMI Energy Weather Forecast: The main.py script was executed as shown in Figure 85 via a
nohup background process, storing outputs in fmigitoutput.log. The script successfully
simulated 3-day PV generation forecasts.

• Elspot Electricity Pricing: The ELSPOTrequests.py script fetched hourly electricity prices using
the API 2 as shown in Figure 86.

• Fingrid CO2 emissions estimates: The Fingrid_Open_data.py script fetched real-time grid
linked CO2 estimates using the API 3 as shown in Figure 87.

Result: All three forecasting APIs (FMI energy weather forecast, Elspot pricing, Fingrid CO₂) were
successfully called, parsed, and validated. Output data is correctly formatted, time-aligned to Finnish
local time, stored in central database, and visualized in Grafana as real-time dashboards for energy
budgeting shown in Figure 84. The central controller publishes this data using MQTT broker, allowing
each component (energy and network) to subscribe to these forecasting APIs.

Figure 84: Screenshot of Grafana visualization of integrated forecasting APIs

2 https://api.porssisahko.net/v1/latest-prices.json

3 https://data.fingrid.fi/api/datasets/266/data

https://api.porssisahko.net/v1/latest-prices.json
https://data.fingrid.fi/api/datasets/266/data

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 81 of 84 © 2023-2025 6G-XR Consortium

Figure 85: FMI energy weather forecast 66h API validation

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 82 of 84 © 2023-2025 6G-XR Consortium

Figure 86: ELSPOT electricity pricing 24 ahead API validation

Figure 87: Fingrid CO2 estimates API validation

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 83 of 84 © 2023-2025 6G-XR Consortium

6 CONCLUSIONS

Overall, the partners fulfilled their objectives on the WP2 enablers. Minor delays occurred mostly on
the development phase and could be easily absorbed by speeding up the deployment phase.

For UC1 Resolution Adaptation or Quality on Demand and UC2 Routing to the Best Edge, the Edge
platforms are ready at Barcelona and Madrid to be able to run the applications. The federation
between both platforms allows to use Barcelona Edge as a secondary Edge controlled by Madrid
Edge orchestrator, allowing to start and stop application instances at Madrid or Barcelona depending
on service requirements. The Northbound Interface (NBI) APIs, combining CAMARA and Network
Exposure Function (NEF) APIs, enable the Application Functions (AFs) to dynamically find which is the
UE location to adapt the path to the closest UPF and to change the applied QoS for the service.
Additionally, there is a NEF API to collect metrics from the network.

For UC3 Control plane innovations, the novel IMS Data Channel solution has been developed and
later deployed at the South Node for the project’s use. This solution allows to start the XR service by
dialling the receiver and selecting the application in the mobile phone.

For UC4 Collaborative 3D Digital Twin-like Environment, the component of North Node Adapter
(NNA), which serves as orchestrator for the North Node, is operational and integrated with the other
components such as the resource optimization module and the 5G Core. The AI-driven resource
optimization enabler follows a reinforcement learning approach to make decisions based on real-
time observations. This enabler calls the Slice Management API offered by the 5G Core to create and
delete the required network slices.

For UC5 Energy Measurement Framework for Energy Sustainability, the infrastructure for the energy
management framework was enhanced in the North Node. New sensors and methods are used to
measure the energy consumption of a newly deployed open source based 5G network and then
elaborate a consumption forecast.

The enablers developed in WP2 are ready to be used for UC validation in WP6.

6G XR | D2.3: Core and Edge enablers delivery result (V 1.0) | Public

 Page 84 of 84 © 2023-2025 6G-XR Consortium

7 REFERENCES

[1] 6G-XR, "D2.2 Orchestration AI techniques End to end slicing and signalling for the core enablers
Implementation," 30 October 2024. [Online]. Available: https://6g-xr.eu/wp-
content/uploads/sites/96/2024/10/D2.2-Orchestration-AI-techniques-End-to-end-slicing-and-
signalling-for-the-core-enablers-Implementation_3.0.pdf.

[2] 6G-XR, "D1.1 "Requirements and use case specifications"," 30 September 2023. [Online].
Available: https://www.6g-xr.eu/wp-content/uploads/sites/96/2023/10/D1.1-Requirements-
and-use-case-specifications-V1.0.pdf.

[3] "Multi-Access Edge Computing," [Online]. Available: https://www.etsi.org/technologies/multi-
access-edge-computing.

[4] "Fishy project," [Online]. Available: https://fishy-project.eu/.

[5] "GSMA Open Gateway," [Online]. Available: https://www.gsma.com/solutions-and-
impact/gsma-open-gateway/.

[6] "CAMARA project," [Online]. Available: https://camaraproject.org/.

[7] "Flask software project," [Online]. Available: https://pypi.org/project/Flask/.

[8] "Waitress software project," [Online]. Available: https://pypi.org/project/waitress/.

[9] "Requests software project," [Online]. Available: https://pypi.org/project/requests/.

[10] 6G-XR, "D5.1 Description of sustainability experimentation framework," 30 June 2024. [Online].
Available: https://www.6g-xr.eu/wp-content/uploads/sites/96/2024/09/D5.1-Description-of-
sustainability-experimentation-framework.pdf.

